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A B S T R A C T   

Reprogramming organisms for large-scale bioproduction counters their evolutionary objectives of fast growth 
and often leads to mutational collapse of the engineered production pathways during cultivation. Yet, the 
mutational susceptibility of academic and industrial Escherichia coli bioproduction host strains are poorly un
derstood. In this study, we apply 2nd and 3rd generation deep sequencing to profile simultaneous modes of ge
netic heterogeneity that decimate engineered biosynthetic production in five popular E. coli hosts BL21(DE3), 
TOP10, MG1655, W, and W3110 producing 2,3-butanediol and mevalonic acid. Combining short-read and long- 
read sequencing, we detect strain and sequence-specific mutational modes including single nucleotide poly
morphism, inversion, and mobile element transposition, as well as complex structural variations that disrupt the 
integrity of the engineered biosynthetic pathway. Our analysis suggests that organism engineers should avoid 
chassis strains hosting active insertion sequence (IS) subfamilies such as IS1 and IS10 present in popular E. coli 
TOP10. We also recommend monitoring for increased mutagenicity in the pathway transcription initiation re
gions and recombinogenic repeats. Together, short and long sequencing reads identified latent low-frequency 
mutation events such as a short detrimental inversion within a pathway gene, driven by 8-bp short inverted 
repeats. This demonstrates the power of combining ultra-deep DNA sequencing technologies to profile genetic 
heterogeneities of engineered constructs and explore the markedly different mutational landscapes of common 
E. coli host strains. The observed multitude of evolving variants underlines the usefulness of early mutational 
profiling for new synthetic pathways designed to sustain in organisms over long cultivation scales.   

1. Introduction 

Successful industrial biotechnological production requires scaling of 
cultures from laboratory flasks and benchtop fermentors to large bio
reactors at volumes up to several hundred cubic meters (Nielsen and 
Keasling, 2016). In cultured populations of high-producing engineered 
organisms, the associated metabolic burden and inhibitions (production 
load) select for spontaneous production escape events in the 
load-carrying genes. This production load can be quantified as relative 
reduction in specific growth rate due to production and results in het
erogeneous populations and production decline over time (Ikeda, 2003; 
Kwon et al., 2015; Rugbjerg et al., 2018a). Such genetic instability 
challenges bioprocess scale-up and requires specific and sometimes 
extensive solutions to yield robust production strains (Borkowski et al., 

2016; Wehrs et al., 2019; Zelder and Hauer, 2000). However, little is 
known about the genetic escape paths of popular host strains: hetero
geneity generally evolves in cultivations beyond bench-top scale and 
requires deep sequencing in order to massively profile in parallel. 
Elaborate proteome and metabolome profiling of such strains can guide 
the choice of host strain dependent on the metabolic requirements 
(Monk et al., 2016), as well as rapid screening of many candidate hosts 
variants (Kim et al., 2014). Yet, host-specific genetic scale-up problems 
are not readily evident after short cultivations because of the difficulties 
in connecting lab-stage strain development with the different conditions 
of late-stage large-scale production. This limits early quantitative 
assessment and early prevention of production declines in industrial 
bioproduction projects (Rugbjerg and Sommer, 2019). 

Deep DNA sequencing is now emerging as a strategy to profile the 
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development of genetic heterogeneity early in the strain design process. 
This allows timely prevention of potential genetic design flaws by 
redesigning gene and expression constructs before being confined to the 
physiological complexity of highly developed late-stage strains. A pop
ulation of metabolically burdened cells generally declines in production 
because of spontaneous escape mutations in critical pathway genes and 
subsequent positive selection of the escapees (Rugbjerg et al., 2018a). 
Designing robust and scalable bioproduction strains requires significant 
engineering work and benefits from several strategies including adap
tive laboratory evolution (Sandberg et al., 2019), synthetic addictions to 
products (Rugbjerg et al., 2018b), dynamically-regulated pathways and 
prevention of mutations in vulnerable genetic sequence architectures 
(Bull and Barrick, 2017; Ceroni et al., 2018; Xu, 2018). Despite this, the 
specific susceptibility of common host strains to heterogeneity has not 
been investigated and strategies are lacking for efficient profiling of 
long-term genetic stability of engineered bioproduction strains. 

We previously applied short-read deep DNA sequencing to a 90-gen
eration constantly-growing time-course of cultured production pop
ulations and found that a major gene escape mode in Escherichia coli 
TOP10 is gene disruption by diverse mobile insertion sequence (IS) el
ements (Rugbjerg et al., 2018a). Specific IS subfamilies such as IS10 and 
IS186 more frequently cause gene disruption than others, with some 
target site preference (Fan et al., 2019). This prompted us to ask whether 
short and long-read ultra-deep DNA-sequencing could be employed to 
profile and screen for strain effects resulting from differences in DNA 
repair systems and IS element abundance across host strains. 

Single nucleotide polymorphisms (SNPs) and IS element trans
position are detectable at subpercentage frequencies using short-read 
population sequencing (Rugbjerg and Sommer, 2019). In contrast, 
detecting complex structural variations such as inversions, duplications 
and deletions is challenging. However, these complex mutations may 
play significant roles in the evolutionary response to an engineered 
production pathway (Deatherage et al., 2015). Recent technical and 
computational advances in nanopore long-read sequencing now allow us 
to detect and analyze for these variants (Sedlazeck et al., 2018b). 

In industry and academia, popular E. coli chassis strains include K-12 
MG1655, which is the most well-characterized type strain. K-12 W3110 
is genetically and metabolically similar yet differs in key metabolic re
actions and is more frequently used industrially (Hayashi et al., 2006; 
Monk et al., 2016). TOP10 is a widely used K-12 cloning host due to high 
transformation efficiency and deficiency of endA and recA. TOP10 and 
its close relative DH10B are often used in academic metabolite pro
duction and synthetic biology studies (Ceroni et al., 2018; Martin et al., 
2003). However, they host a high number of IS elements as seen in the 
genome sequence (Durfee et al., 2008), potentially limiting the appli
cations beyond standalone cloning. BL21(DE3) is a popular B strain for 
high-level protein expression (Jeong et al., 2009), while strain W is fast 
growing and can utilize sucrose (Park et al., 2011). 

In this study, we experimentally simulated large-scale cultivations 
with these five common E. coli host strains by serial passages of growing 
cultures to avoid stationary phase transitions. We combined long-read 
and short-read sequencing platforms to compare mutational modes for 
two heterologous metabolic pathways to mevalonic acid and 2,3-buta
nediol, respectively. Mevalonic acid is a precursor to isoprenoid fra
grances, plastics and medicine. It can be synthesized in E. coli from 
acetyl-CoA by overexpressing native acetyl-CoA acetyltransferase and 
two heterologous enzymes (Xiong et al., 2014). The potential biofuel 2, 
3-butanediol has low microbial toxicity and can be synthesized in E. coli 
from pyruvate by overexpression of three heterologous enzymes (Xu 
et al., 2014). 

2. Results 

2.1. Different chromosomal IS compositions and production loads in 
common E. coli production strains 

We compared the modes by which genetic heterogeneity evolved in 
five common metabolite production hosts in an experimental simulation 
of large-scale, long-term (90 cell generations) bioproduction (Fig. 1A). 
We first conducted a short-term phenotypic comparison after direct 
cultivation from single cell (approximately 20 generations). The five 
E. coli strains, BL21(DE3), MG1655, TOP10, W, and W3110, produced 
the two case-products, 2,3-butanediol and mevalonic acid, at different 
titers of 0.5–1.1 g/L and 0.2–0.5 g/L respectively (Fig. 1B), and with 
different degrees of production loads (7–30%), defined as the percent
wise reduction in specific growth rate compared to the respective non
producer wildtype (Fig. 1B). The degree of production load positively 
correlated with production titers, though not at perfect linearity with R2 

of 0.66 and 0.48 respectively (Fig. 1B). 
Using the available genome sequences for the host strains and liter

ature, we quantified IS copy numbers (Fig. 1C) (Methods). We found 
large variations in the distributions of the different IS element subtypes 
in the five strains potentially translating into different rates of IS-based 
production decline. Some strains such as TOP10 and BL21(DE3) 
harbored up to 66 copies and many different subtypes of IS elements 
(Fig. 1C). In contrast, W harbored a total of only 16 IS elements (Fig. 1C). 
We also screened the reference IS compositions of two other popular 
academic E. coli strains, Crooks and DH5-α, and found IS compositions to 
be well represented by the selected five strains, with DH5-α hosting both 
IS1 and IS10 (Fig. 1C) previously implicated in high transposition rates 
(Rugbjerg et al., 2018a; Sousa et al., 2013). 

2.2. Host-specific genetic declines in long-term engineered mevalonic acid 
production 

Next, to simulate large-scale industrial growth for 90 generations, we 
serially passaged mevalonic acid-producing cells strictly in growing 
phase every 12 h to avoid selecting for industrially rare stationary-phase 
culture transitions and resulting lag phases. This scheme also kept the 
growing cultures synchronized, similar to our previous experimental 
simulations (Rugbjerg et al., 2018a). Recent experimental simulations in 
yeast have incorporated serial passaging regimes to simulate long-term 
cultivation (D’Ambrosio et al., 2020; Lv et al., 2020). The basic setup is 
attractive by resembling industrial stability tests and is likely a fair 
approximation of the actual scale-up, though it does not capture phys
ical changes due to the large-scale operation, such as oxygen and carbon 
gradients and starvation (Takors, 2012) (Wehrs et al., 2019). 

Over the large-scale mevalonate production simulation, E. coli 
TOP10 emerged as the fastest-declining production strain (Fig. 2, and 
Supplementary Fig. S1). Among four parallel populations of each host, 
the TOP10 populations fully lost the mevalonate-producing phenotype 
within 75 generations of culture corroborating our previous results 
(Fig. 2) (Rugbjerg et al., 2018a). The decline in mevalonate production 
was accompanied by rising population growth rates (Fig. 2). 
Mevalonate-producing BL21(DE3) declined slower than TOP10 (Fig. 2) 
despite a higher measured production load (Fig. 1B). This result indi
cated a slower spontaneous escape rate for BL21(DE3). In closely related 
MG1655 and W3110, production declines of 20% from the starting titer 
were seen at the last sampling point of 90 generations (Fig. 2). E. coli W 
did not show declines in production but also had a modest production 
load and titer (Fig. 1B). 

2.3. 2,3-Butanediol production declines to an intermediate-level 
production state 

We engineered the five E. coli host strains to produce 2,3-butanediol 
by transformation with the previously developed pET-RABC plasmid (Xu 
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et al., 2014). pET-RABC introduces the three heterologous pathway 
genes budA, budB, budC in an operon under a constitutive promoter 
along with non-utilized remnant genes lacI and lysR. We used the same 
experimental setup applied for mevalonic acid to simulate large-scale 
production using constantly growing, serially passaged cultures pro
ducing 2,3-butanediol for approx. 90 generations (Methods). 

In all strains, 2,3-butanediol production declined, reaching inter
mediate levels at around 60% of the starting titer after 90 generations 
(Fig. 3 and Supplementary Fig. S2). TOP10, MG1655 and W3110 cul
tures went through a dynamic period at generations 50–75 followed by a 
more stable plateau. These adaptations were accompanied by an in
crease in specific growth rates (Fig. 3). In contrast, no significant in
crease in fitness accompanied the production declines of BL21(DE3) and 
W. These different dynamics over the large-scale simulation may also be 
somewhat reflected by the relatively large differences in initial pro
duction titer of the five strains (Fig. 1A and Supplementary Fig. S2), for 
example we measured the lowest initial production titer and load of 2,3- 

butanediol and mevalonic acid in W, but also the highest stability. 

2.4. Transcription initiation region marks a strong SNP and IS insertion 
hot spot in mevalonate-producing TOP10 and BL21(DE3) 

To compare differences in genetic heterogeneity among the five host 
strains, we first ultradeep-sequenced the mevalonate production 
plasmid (pMVA1) populations at the beginning and end of the experi
mentally simulated large-scale fermentation. For each host and time- 
point, three of the four parallel-cultivated populations were sequenced 
using short paired-end reads (2x150 base pair) with a minimum 
sequencing coverage of 4,000x (Methods). Matching our phenotypic 
observations of mevalonic acid production decline, the pathway genes 
especially in TOP10 and BL21(DE3) contained a high degree of mutation 
after 81 generations of cultivation. The mevalonic acid production 
plasmid pMVA1 we used overexpresses the three pathway genes atoB, 
mvaS and mvaE in an operon using the constitutive “Anderson” J23100 

Fig. 1. Concept of the study exploring sta
bility and heterogeneity profiles of five 
different, commonly used academic and in
dustrial E. coli strains. A) Industrial long- 
term cultivation of strains was experimen
tally simulated by serial passaging of 
growing cultures and subjected to time-lapse 
sampling to study population dynamics 
when producing mevalonic acid or 2,3-buta
nediol. B) Prior to long-term cultivation, 
both product pathways confer a production 
load (percentwise growth rate reduction to 
wildtype) that is expected to amplify the 
individual rates of escape and generally 
scales with initial production titers (error 
bars depict s.e.m., n = 3). C) Common E. coli 
host strains differ in diversity and chromo
somal copy number of IS elements. IS ele
ments reported for the reference genomes of 
the five host stains experimentally studied 
and compared to two other popular host 
strains Crooks and DH5-α.   

Fig. 2. Declines in mevalonate production titer (solid line) in experimentally simulated large-scale production differ in five E. coli platform strains and correlate with 
rising growth rate (dashed line). For all sample points, mean is shown with error bars representing standard error of the mean (n = 4). 
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promoter. At the 81-generation time point, approx. 10% of the pathway 
population contained SNPs (including short deletions) close to the 
transcription initiation region of production pathway genes (Fig. 4A). 
This mutational hot spot contained several SNPs (Fig. 4A), mainly loss- 
of-function. However, over the course of the 81 generations, particular 
SNPs and indels enriched more often across replicates and host strains 
(Supplementary Fig. S3). This trend indicates a higher spontaneous 
mutation rate for certain SNPs (e.g. short homopolymers) in addition to 
the mutation hot spot around the transcription initiation region, as 
previously found in other biological systems (Jinks-Robertson and 
Bhagwat, 2014). In the most mutated host strains, BL21(DE3) and 
TOP10, specific pathway SNPs were found to enrich in all three 
sequenced replicates (Supplementary Fig. S3). By sequencing pop
ulations at two time points, we could confidently identify SNPs that 
predominantly or uniquely enriched in specific strains (Supplementary 
Fig. S3). Time resolution also improved the ability to distinguish true 
and recurring false SNPs at such low frequency (0.15–1%), since the 
latter are strain-agnostic sequencing artefacts and remain at constant 
frequency over time (Supplementary Fig. S3). At a 0.15% SNP detection 
limit, none of the reported early SNPs rose to higher frequencies 
following the large-scale cultivation simulation, which indicated that 
dominant late-stage SNPs could not be detected through early culture 
sequencing with a 0.15% detection limit (Supplementary Fig. S3), which 
however is also not particularly deep from the perspective of predicting 
microbial evolution early on. In fastest-escaping TOP10 populations, 
most enriched SNPs were in the short constitutive J23100 promoter 
(2.8% ±1.7 of population) or atoB (7.8 ± 2.1% of population), the first 
gene in the operon of the engineered biosynthetic pathway (Fig. 4A and 
Supplementary Fig. S3). This result indicated selection for these muta
tions leading to complete loss of engineered mevalonic acid production. 
Similarly, we detected a number of IS insertions by analyzing split-end 
reads (Methods). IS insertions were also targeted around the transcrip
tion initiation region and largely impacted the J23100 promoter and 
atoB gene first in the biosynthetic operon (Fig. 4C), reaching respec
tively 7 ± 2% and 12 ± 3% of the populations. The heterologous mvaS 
and mvaE genes of the operon, encoding HMG-CoA synthase and 
reductase, were largely intact (IS disruptions in respectively 6 ± 6 and 
0% of the populations). 

The p15A origin also marked a host-specific mutation hot spot with 
substantial enrichment of SNPs in W3110 and W replicates to approx. 
40% of the population (Fig. 4A), thus showing that the approx. 50 

mutations largely co-occurred. Notably, the same mutational pattern 
could be observed in BL21(DE3) replicates (Fig. 4A) in the 0.1–1% 
population frequency. It is tempting to speculate that these trends drive 
a change in plasmid copy number and. An interaction with native 
plasmids, e.g. the 100 kb large pRK1 in W, is less likely, since the pattern 
was also seen in other strains. However, these hypotheses were not 
tested. 

2.5. Limited genetic heterogeneity behind intermediate 2,3-butanediol 
production decline 

To investigate if the observed phenotypic declines in 2,3-butanediol 
production was due to genetic heterogeneity, we ultradeep-sequenced 
the pET-RABC production-plasmid populations from three of four par
allel lineages from the five host strains before and after the experi
mentally simulated long-term fermentation using short paired-end reads 
(2x150 base pair). Only a limited number of SNPs accumulated to more 
than 1% population frequencies in the pathway genes, affecting TOP10 
and W over 81 generations (Fig. 4B). However, many SNPs reached 
subpercentage frequency even when disregarding presumably artificial 
SNPs also detected at the early sequencing time-point (25 generations) 
(Methods) (Fig. 4B) (Supplementary Fig. S4). In contrast, higher fre
quencies of SNPs in both specific positions and specific host strains 
enriched over the time course for the mevalonate producing strains 
(Supplementary Fig. S3). The acetolactate synthase gene budB was the 
most mutated pathway gene even though acetolactate toxicity is not 
expected in E. coli (Aristidou et al., 1994). Notably, IS elements were not 
detected in pET-RABC plasmid populations from any replicates of the 
tested five hosts using short-read sequence data (Fig. 4D), but only 
subsequently two <1% IS insertions were detected in long-read data for 
TOP10. This could indicate that mutation formed at lower rates in the 
pET-RABC system since the measured production load was approxi
mately the same for the two case pathways. 

Interestingly, also the pMB1 origin of replication in pET-RABC were 
marked as mutation hot spots for enrichment of SNPs in the same two 
host organisms W and W3110 (Fig. 4B). Even if the p15A and pMB1 
origins are mechanistically very different, such changes could e.g. drive 
copy number differences over time. Finally, it is possible that chromo
somal changes could enrich over time, e.g. as in yeast (D’Ambrosio et al., 
2020), though not seen in a previous study of mevalonic acid production 
decline (Rugbjerg et al., 2018a). To survey this at population-level, the 

Fig. 3. Five E. coli platform strains engineered for 2,3-butanediol production show declining production titers in long-term production and rising growth rate (dashed 
line). For all sample points, mean is shown with error bars representing standard error of the mean (n = 4). Titers are relative to first measured point. 
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sequencing needed would be significantly higher to satisfy an average 
whole-genome coverage similar to the plasmid population of the present 
study, but it could bring forward important clues on the most pressured 
parts of native metabolism, on which the pathway drains substrate, 
energy and redox power. 

2.6. Long-read deep sequencing uncovers complex structural variants and 
a short inversion between naturally coded inverted repeats 

Short-read sequencing can accurately detect mobile element dis
ruptions, SNPs and short insertions/deletions (indels) in deep-sequenced 
populations, however spurious split-end short reads in sequenced 
plasmid populations from all five host strains indicated that more 
structural variation might be taking place (Supplementary Figs. S5 and 
S6). We therefore explored if long-read sequencing could enable dis
covery of other structural variants within the production populations 
(Sedlazeck et al., 2018a). Specifically, we hypothesized that long reads 
permit the discovery of overlooked subpopulations carrying structural 
variation and correct for rare sequencing artefacts unique to short-read 

sequencing at subpercentage frequencies. We linearized purified 
plasmid populations from three lineages of each of the five mevalonic 
acid-producing host strains (Methods) and sequenced the populations 
using nanopore technology (Minion, Oxford Nanopore Technologies) for 
ultrahigh coverage (>10,000x) (Methods). We took advantage of the 
option for PCR-free library preparation to benefit from its intrinsic in
dependence of DNA polymerase and avoid polymerase-related artefacts. 
Such artefacts may extend beyond SNPs and remain a major disadvan
tage of sequencing-by-synthesis short-read platforms. We 
reference-mapped the long reads using the long-read mapper NGMLR 
and detected structural variation using Sniffles (version 1.0.7) (Sedla
zeck et al., 2018b) (Methods). 

In agreement with the observed phenotypic dynamics for mevalonic 
acid production titer and growth rate (Fig. 2), structural variations were 
most highly enriched in the TOP10 populations but were also signifi
cantly frequent in BL21(DE3), MG1655 and W3110 and to some extent 
in W (Fig. 5A). Consistent with our short-read data, nanopore 
sequencing detected many insertions with IS elements into atoB in the 
three sequenced TOP10 replicate lineages (9 ISs above 1% using long 

Fig. 4. Genetic heterogeneity enriched dur
ing long-term cultivation of five common 
E. coli host strains engineered to produce 
mevalonate and 2,3-butanediol respectively. 
Three parallel populations (indicated by 
color) were short-read ultra-deep sequenced 
following respectively 82 and 81 generations 
of cultivation without stationary phase. A) 
Population frequencies of SNPs and short 
deletions in mevalonic acid producing cells. 
B) Population frequencies of SNPs and short 
deletions in 2,3-butanediol-producing cells. 
C) Position-resolved population frequencies 
of IS elements indicated by broken 
sequencing reads mapping to the reference 
production construct and an IS element. One 
IS insertion normally produces two broken 
read points. D) No IS insertions were seen by 
short-read DNA sequencing of the 2,3-buta
nediol-producing populations. E) Heatmap 
shows presence of IS subfamilies respective 
host genomes and in mevalonic acid-plasmid 
populations following 82 generations of 
growth. Colors indicate values of individual 
biological replicates (n = 3). (For interpre
tation of the references to color in this figure 
legend, the reader is referred to the Web 
version of this article.)   
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reads, 10 ISs above 1% using short reads). 
On the other hand, Sniffles predicted structural variants not seen 

when inspecting split-end short reads (Supplementary Fig. S5 and 
Fig. S6), e.g. near the plasmid origin of replication (Fig. 5). There, co- 
developing complex structural variations of deletion, duplication, or 
inversion events were enriched and reached frequencies of approx. 20% 
in TOP10 and BL21(DE3) replicates. 

At end of the experimentally simulated long-term fermentation, we 
found that approx. 0.2% subpopulations in two of three long-read- 
sequenced E. coli W3110 lineages carried a 134-bp inversion confined 
by 8-base pair short IRs naturally present in the coding sequence of 
pathway gene atoB (Supplementary Text). This inversion introduces two 
premature stop codons that disrupt mevalonic acid production (Fig. 5B). 
Knowing the specific position of the inversion, we also searched for it in 
the split-end short-read data and found it uniquely in data from the same 
two W3110 lineages, thus cross-validating its existence. Since the short- 
read length was constrained to 150 base pairs, no single short read 
encompassed the full IR-inversion-IR, supporting why it had been 
difficult to predict de novo using our 150 bp paired-end reads. de novo 
discovery of the inversion may therefore have been aided by longer short 
reads. Further, inspection of paired short reads identified pairs covering 
the inversion, which confirmed that the inversion was present in the 
pathway population of W3110 lineages. While inversion as sequencing 
artefact has not previously been reported on the short-read Illumina 
platform, IR-related secondary structures do promote certain erroneous 
SNPs on this platform (Nakamura et al., 2011). 

Long-read sequencing predicted the existence of several complex 
forms of structural variations such as co-appearing duplications and 
deletions around the p15A origin of replication in pMVA1 (Fig. 5A). 
These structural variants of the origin of replication did not limit to W 
and W3110 as we found for the SNP hot spots we identified using short 
reads, thereby indicating a different mechanism. Since an origin is 
essential to replicate a plasmid, this predictions of deletions supports the 
observations that plasmid copies can reside in multimers that undergo 
complex recombination (Chang and Cohen, 1978). Such tandem dupli
cated plasmid is not directly detectable after necessary linearization for 
nanopore sequencing though we also see in vitro <1% spontaneous 
full-length duplications at the linearization points (Fig. 5A). The exis
tence of intra-plasmid recombination could only partially be described 
using split-end short reads (Supplementary Fig. S5). Some predicted 
structural variation in the pMVA1 plasmids seemed to interact with the 
boundary of a 144-bp incomplete, undescribed remnant of IS1 that we 
found close to the p15A origin dating back to its initial domestication in 
pACYC184 (Chang and Cohen, 1978). We find this IS1 remnant is pre
sent in many but not all p15A-based plasmids deposited in Genbank, 
indicating non-essentiality to the origin. It is uncertain whether this IS 
remnant plays a detrimental role to stability, but this stretch can pre
sumably recombine with any intruding second IS1. As use of long-read 
nanopore sequencing grows, we will potentially gain more informa
tion about potential errors of this method to help interpret read data. We 
also detected minor tandem duplications and inversions (Fig. 5A) along 
with many non-enriched small deletions that may have been 
nanopore-specific sequencing artefacts (Sedlazeck et al., 2018a). We 
also sequenced the end-point (81-generation) 2,3-butanediol production 
plasmids (pET-RABC) with ultra-deep nanopore long reads to see if 
undiscovered mutation modes could be resolved by this technology for 
this pathway (Fig. 5C) (Methods). In two TOP10 populations, nanopore 
reads allowed for identification of two very rare (0.02% and 0.2%) in
stances of IS1 insertion into different positions in budA, the first gene of 
the pathway operon that encodes α-acetolactate decarboxylase (Fig. 5C). 
These rare ISs were overlooked by the short-read sequencing, but 
otherwise no IS disruption was detected in pET-RABC. In addition, we 
detected a 4.7 kb long backbone duplication, effectively doubling lacI, 
kanR and the pBR322 origin of replication (Fig. 5C), which was unique 
to long-read analysis and conserved in all 15 sequenced lineages of the 
five host strains. In one lineage of W and W3110, high frequencies of the 

Fig. 5. Ultra-deep long-read nanopore DNA sequencing reveals structural 
variants in production plasmids of populations of five E. coli chassis strains. 
Populations producing mevalonate and 2,3-butanediol were analyzed after 
respectively 80 and 81 generations of un-interrupted growth to simulate large- 
scale production. A) Structural variation detected in mevalonic acid production 
populations. Data from three sequenced biological replicates for each host 
strain show different modes of complex structural variation. Each line was 
adjusted according to its best left-sided split end (Sniffles prediction). For in
sertions, line length indicates insertion length. Colors indicate respective 
structural variant forms (Methods). B) Schematic of inversion within pathway 
gene driven by short inverted repeats (IRs) naturally coded in the mevalonic 
acid pathway gene atoB leading to prematurely terminated pathway enzyme 
variants in subpopulations of E. coli W3110. C) Structural variation detected in 
2,3-butanediol production populations. Data from three sequenced biological 
replicates for each host strain show different modes of complex structural 
variation. Each line was adjusted according to its best left-sided split end 
(Sniffles prediction). For insertions, line length indicates insertion length. For 
TOP10, rare IS1 insertion emphasized with bolder strength. Colors indicate 
respective structural variant forms detected in the populations of a randomly 
selected replicate (Methods). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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duplication at 12% and 16% were seen, whereas the remaining cases 
varied between 0.1 and 2.2%. Such intra-plasmid recombination was 
only partially detected by the corresponding split-end short reads 
(Supplementary Fig. S5). 

3. Discussion 

In this study, we systematically compared the emergence of genetic 
heterogeneity within five E. coli host strains that are commonly used in 
academic and industrial bioproduction. In an experimentally simulated 
large-scale production of two case products, we found that these hosts 
differ substantially in their mutational modes and frequencies. Specif
ically, we saw certain host strains were more susceptible to decline 
driven by differences in activity by IS elements with IS1 and IS10 
transposition being particularly active in agreement with previous 
studies in MG1655:tn10 and TOP10 (Fan et al., 2019; Rugbjerg et al., 
2018a; Sousa et al., 2013). However our data also indicates that the basis 
for the rate of decline is product/plasmid-specific, which may be asso
ciated to the mechanism of plasmid segregation (discussed more below). 
We also found that differences in production load caused by the same 
metabolic pathway in different host strains largely varied with pro
duction titer, thereby underpinning the engineering tradeoff that higher 
load can lead to higher instability. Based on these results, we propose 
that TOP10 is a less stable metabolite production host because it con
tains more active IS subfamilies IS10 and IS1. Notably, several other 
popular E. coli strains also harbor active IS10 such as DH5-α and Nissle 
1917 (Fan et al., 2019). However, the vehicle of gene propagation also 
appears to matter, given the higher stability of the pET-RABC based 
production. As has been discussed previously, the imbalanced segrega
tion of plasmid copies at cell division could elevate the spread of mu
tation (Rugbjerg and Olsson, 2020; Tyo et al., 2009). In this regards, 
chromosomal integration may provide better stability over time since 
every gene copy is mutationally independent. Recent studies have pre
sented CRISPR/Cas9-aided mutation or silencing strategies targeting the 
transposase genes driving IS transposition (Geng et al., 2019; Nyerges 
et al., 2019; Umenhoffer et al., 2017). Based on our results, abolishing 
only subsets of the typical 20–60 IS copies (e.g. IS1 and IS10 subfamilies) 
may be sufficient in many typical bacterial production organisms. In 
particular, IS silencing appears interesting for strain diagnostics, but 
may be unrealistic in an actual production environment due to the 
typical burden associated with CRISPR/Cas9 expression. Further, using 
DNA deep-seq data, we find a considerable higher mutational activity 
(ISs and SNPs) around the transcriptional initiation region (Fig. 4C). 
This could be due to a selective advantage of abolishing even the first 
gene of the pathway operon (atoB) along with the downstream coded 
genes, yet physiological studies have clearly linked the toxicity of 
mevalonate production to the expression of the second operon gene, the 
heterologous HMG-CoA synthase (coded by mvaS) (Kizer et al., 2008). 
This suggests that promoter areas may be spontaneously more muta
genic due to the high transcriptional activity (Jinks-Robertson and 
Bhagwat, 2014), and these could be a potential target for strain engi
neers looking to scale processes. 

These results demonstrate the significant advantage of profiling the 
genetic stability of individual pathway designs using ultra-deep DNA 
sequencing prior to long-term usage. Compared to sequencing isolates 
using e.g. Sanger sequencing, deep sequencing provides a fuller picture 
of frequently competing mutational modes. Specifically, we find that a 
combination of short-read and long-read sequencing allows for a 
broader capture of mutational modes. 

2,3-butanediol production was generally more stably maintained 
than mevalonic acid production. The production levels decreased to
wards a 40-percent lower level, indicating that this was sufficient for 
mitigating most of the burden associated with 2,3-butanediol produc
tion. Ultra-deep sequencing by short and long reads indicated that ge
netic heterogeneity had developed resulting in low levels of SNPs 
overall. Long-reads specifically predicted IS element insertions within 

TOP10 lineages and the formation of backbone duplications, which 
appeared in the same sequence in all strains but at variable frequencies 
(Fig. 5C), suggesting a specific but cryptic mechanism involving the 
placI genetic sequence, which was a remnant not directly utilized for 
pathway expression in pET-RABC. 

Emphasizing the utility of hybrid ultra-deep sequencing, combining 
short-and long-read sequencing increased our ability to identify muta
tional modes at different frequencies and led to the discovery of a short 
but detrimental inversion within a particular host strain (E. coli W3110). 
While this low-frequency inversion rose to only <1% frequency over 81 
generations, it indicates a type of heterogeneity that could be expected 
in strains when abolishing all IS transposition. It also highlights that 
even common 8-bp short IRs can promote inversions to generate 
frameshifts effectively truncating the atoB pathway gene. This switching 
is similar to reversible phase variation by promoter inversions that 
regulates antibiotic resistance and flagella synthesis in bacteria, driven 
by IRs up to several hundred base pairs long (Bi and Liu, 1996; Jiang 
et al., 2019). Inversions between IRs can be dependent on specific DNA 
invertases e.g. coded by genomic phages, as well as general homologous 
recombination driven by RecA (Darmon and Leach, 2014), which is 
present in all our studied host strains except TOP10. The detrimental 
inversion within the biosynthetic atoB gene suggests that IRs over
represented in many coding genes across phylogenetic kingdoms pose a 
risk for engineered production pathway stability. In evolution of 
S. cerevisiae, split-end short read population sequencing has guided the 
confirmation of longer chromosomal inverted gene amplifications at 
short palindromic junctions as adaptive mechanism (Payen et al., 2014), 
underlining the recombinogenic risks of repeat structures. Similar to 
many sequenced genomes, we found an overrepresented number of 
short IRs (Cox and Mirkin, 1997; Lavi et al., 2018). We counted 17 short 
IRs less than 250 bp apart in the mevalonic acid pathway genes (SI Text). 
This pattern indicates conserved functional biological roles that may be 
sequence-context dependent (e.g., secondary structures around termi
nators and RNA switches prior to translation initiation sites) (Lavi et al., 
2018). It remains unknown what makes W3110 prone to this inversion 
that abolishes the coded gene function. Interestingly, gene synthesis and 
codon optimization of pathway genes may yield the unintentional pos
itive side effect of preventing inversion by removing short-spaced IRs 
present in the source sequences, as the chance of randomly introducing 
an IR is far lower than their elevated natural abundance (Cox and Mir
kin, 1997; Lavi et al., 2018). The observation of within-gene inversion 
that disrupts pathway enzyme expression supports use of codon opti
mization in engineered gene constructs merely for the sake of removing 
secondary information pre-encoded into natural genes. 

Volumetric scale-up is essential to most industrial bioproduction 
projects, and the evolutionary pressure on engineered genetic constructs 
means detecting sequence vulnerabilities early is important. In this 
study we leveraged two next-generation sequencing technologies to 
profile E. coli strain and sequence specific genetic heterogeneity that 
accumulate through prolonged cell generations equivalent to those 
experienced in large-scale production. We showed emergence of highly 
sequence and host-specific mutation especially in promoter and coding 
regions (Fig. 4 and Figs. S3 and S4) as well as host-specific pathway 
disruption by transposing IS elements. Ultra-deep sequencing of early 
cultures at 25 generations only identified low-frequency SNPs 
(0.15–4%) that did not rise in frequency, were present across host strains 
and replicated populations and likely constituted artificial mutations. 
Different higher-frequency SNPs were detected following 81–82 gener
ations of uninterrupted cultivation indicating that those were true and 
that early-cultivation sequencing could not detect true SNPs (when 
applying the 0.15% detection level). Similarly, the observed recurrence 
of promoter and gene-specific SNPs (Supplementary Figs. S3 and S4) 
speaks for using deep-seq in the evaluation of expression construct 
designs. 

Thus, both in terms of preventing SNPs and structural variation in 
production genes, our study encourages routine use of deep-DNA 
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sequencing combined with serial-passaging experiments for profiling 
stability and failure modes of different candidate host strains as well as 
expression sequence designs prior to scale-up to avoid recurring muta
tions. Other production organisms also harbor many IS elements (e.g. 
lactobacilli), and most production hosts would amenable to serial- 
passaging setups combined with deep sequencing to screen for these. 
Our results point to general engineering principles such as avoiding 
mutation-prone sequences including direct or inverted repeats and host 
strains harboring many highly active mobile elements. Finally, these 
data suggest substantial strain-to-strain variation in the long-term sta
bility of production populations highlighting the importance of testing 
several different production hosts when developing a bioprocess. 

4. Methods 

4.1. Strains 

The investigated strains were constructed by standard electropora
tion of the indicated plasmid (Table 1) into the following host strains 
originating from the indicated sources. 

E. coli BL21(DE3) (Coli Genetic Stock Center, Yale). 
E. coli MG1655 (Coli Genetic Stock Center, Yale), contained the 

thermosensitive plasmid pKD46, which we cured by cultivation at 37 
deg. C overnight. 

E. coli TOP10 (Thermo Scientific). 
E. coli W (DSMZ). 
E. coli W3110 (Coli Genetic Stock Center, Yale). 

4.2. Plasmids  

4.3. Media 

For all cultivations, unless otherwise stated, standard 2xYT charac
terization medium was used: 10 g/L yeast extract (Sigma-Aldrich), 16 g/ 
L tryptone (Bacto), 5 g/L NaCl (pH adjusted to 7.0) supplemented with 
either 50 μg/mL kanamycin (pET-RABC-carrying strains) or 30 μg/mL 
chloramphenicol (pMVA1-carrying strains). 

4.3.1. Long-term cultivation by serial continuous growth of E. coli 
producing mevalonic acid or 2,3-butanediol 

Four parallel 25-mL cultures were started in 50-mL aerated tubes 
from single colonies and grown at 30 ◦C with horizontal shaking at 250 
rpm. After 12 h, 0.5 mL broth was transferred into 25 mL fresh medium 
and incubated under the same conditions for another 12 h. At each 
passage, the OD600 was recorded to determine the accumulated number 
of cell divisions (Supplementary Table S1) and 1.8 mL 50% glycerol 
stocks were stored at − 80 ◦C and 1.8 mL culture was stored at − 20 ◦C. 

4.4. High-depth short-read (Illumina) DNA sequencing and analysis 

Production plasmid populations were purified from each time point 
sample using a standard plasmid purification kit (Macherey-Nagel). 
Samples were prepared for sequencing using the Nextera XT v2 set A kit 
(Illumina) per manufacturer’s instructions with the addition of two 

‘limited-cycle PCR’ cycles. Sequencing was in pooled Miseq runs with 
150-bp paired-end reading. CLC Genomics Workbench (version 8.5) was 
used for initial bioinformatics analysis. First, reads were mapped to the 
reference pMVA1 or pET-RABC sequence respectively. Broken aligned 
reads were identified using the CLC Genomics Workbench Breakpoint 
analysis tool to yield a table of consensus broken unaligned reads and 
their abundance (maximum three mismatches allowed in the mapped 
read region, p-value for the fraction of unaligned reads set to 0.0001) to 
obtain an initial overview of structural variation. SNPs and short de
letions were called using the CLC Genomics Workbench Low Frequency 
Variant Detection tool with 1% required significance level and 0.25% 
minimum frequency. SNP frequencies in sequenced populations were 
calculated by division with their respective coverage values. 

SNPs found in the plasmid backbone at >90% frequencies in the 
sample of the initial seed were regarded as present in the starting 
plasmid. Frequencies of IS elements in plasmid populations were found 
by the relative coverage upon mapping the reads to all potential IS el
ements and only regarding fully covered instances. Frequencies of IS- 
related broken reads were calculated as the number of reads split be
tween IS and reference relative to the sum of perfectly and non-perfectly 
aligned reads. IS subfamily sequences and counts were collected from 
the respective strain genome sequencing studies with help of previous 
prediction (Kim et al., 2011) (GenBank accessions BL21(DE3): 
CP001509, MG1655: NC_000913, For TOP10, the identical or closely 
related DH10B: NZ_010473, W: CP002185, W3110: AP009048, Crooks: 
CP000946, For DH5-alpha, NEB5-alpha: CP017100). 

4.5. High-depth long-read (Nanopore) DNA sequencing and analysis 

From each culture passaging time point, 2-mL samples were re- 
cultured from frozen sample stocks under conditions identical to the 
evolution experiments. At least 30 ng/uL plasmid DNA in was extracted 
using a standard plasmid extraction kit (Macherey-Nagel) and linearized 
using the single-cutting BamHI enzyme. We utilized the BamHI site 
because it would linearize the reference plasmids only once, and is 
located between pathway coding sequences, thus lowering risk for being 
involved in mutation. Briefly, multiplexed library preparation for 
nanopore sequencing was adapted from previous protocols (Quick et al., 
2017) and thus end-prepared plasmid DNA was barcode- and 
adapter-ligated (Supplementary Text). A sequencing flow cell (R9.4.1; 
FLO-MIN106.1, Oxford Nanopore Technologies) was primed and loaded 
with the diluted library according to the manufacturer’s instructions. 
Sequencing was performed with live base calling and stopped after three 
days or when the number of actively sequencing pores containing a 
single strand fell below 10. Resulting fastq files were aligned to the 
reference plasmid sequence using NGMLR (version 0.2.7) and analyzed 
for structural variation using Sniffles (version 1.0.7) (Sedlazeck et al., 
2018b). Direct Sniffles output is available as Supplementary files. The 
sequencing data will be available via the ArrayExpress repository. 

4.5.1. Measurement of 2,3-butanediol and mevalonic acid production by 
HPLC 

At each culture passage, 900 μL medium was mixed with 900 μL 50% 
glycerol and stored at − 80 ◦C. Following the simulated fermentation, 
each population sample from a 25-μL glycerol stock was used to inoc
ulate 15 mL medium for incubation at 30 ◦C with shaking at 250 rpm for 
54–58 h. Following incubation, 300-μL aliquots were treated with 23 μL 
20% sulfuric acid. Samples were vigorously shaken and centrifuged at 
13,000 g for 2 min. Supernatant (medium) samples were injected into an 
Ultimate 3000 HPLC running a 5 mM sulfuric acid mobile phase (0.6 
mL/min) on an Aminex HPX-87H ion exclusion column (300 mm × 7.8 
mm, Bio-Rad Laboratories) at 50 ◦C. A refractive index detector was 
used for detection. Standard curves for 2,3-butanediol and mevalonic 
acid were generated with respectively 2,3-butanediol and mevalono
lactone (Sigma-Aldrich) dissolved in 2xYT medium supernatant from an 
engineered nonproducing strain incubated under same conditions. 

Table 1 
List of plasmids.  

Plasmid Features Metabolite end 
product 

Reference 

pET- 
RABC 

pcon-budABC, lysR 
kanR, pBR322 

2,3-butanediol Xu et al. (2014) 

pMVA1 pJ23100-atoB-mvaS-mvaE, 
camR, p15A 

Mevalonic acid Rugbjerg et al. 
(2018b)  
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4.5.2. Measurement of growth rates and calculation of production load 
To measure growth rates, 1.5-μL aliquots of stationary-phase cultures 

e.g. grown for productivity analysis (as described above) were used to 
inoculate 200 μL medium in microtiter plate wells. Plates were sealed 
with Breathe-Easy polyurethane seals (USA Scientific) and incubated 
with “fast” continuous shaking in an ELx808 kinetic plate reader (Bio
Tek), which measured the OD630 value every 10 min. 

Background-subtracted OD630 values were computed using mea
surements from uninoculated wells. Local growth rates were computed 
for each background-subtracted OD630 value by regression in rolling 
windows of five measurement points and background-subtracted OD630 
values (Rugbjerg et al., 2018a). To represent growth rates, the third 
maximum local growth rate was reported. Production load was calcu
lated as the percentwise reduction in growth rate compared to the same 
host strain grown without the respective production plasmid. 

4.6. Replicates 

Throughout the study, biological replicates were used for calculation 
of mean and s.e.m. In serial-passaging experiments, the biological rep
licates refer to independent lineages cultivated in parallel from different 
ancestral single colonies. 

Data availability 

Deep-sequencing data from the study has been deposited in 
ArrayExpress (accession no. E-MTAB-9800). 

SNPs predicted from Illumina data (.csv) as supplementary material. 
Broken read signatures predicted from Illumina data (.csv) as sup

plementary material. 
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