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ABSTRACT 
The ability to predict a protein’s local structural features from the primary sequence 
is of paramount importance for unravelling its function if no solved structures of the 
protein or its homologs are available. Here we present NetSurfP-2.0 
(http://services.bioinformatics.dtu.dk/service.php?NetSurfP-2.0), an updated and 
extended version of the tool that can predict the most important local structural 
features with unprecedented accuracy and run-time. NetSurfP-2.0 is sequence-
based and uses an architecture composed of convolutional and long short-term 
memory neural networks trained on solved protein structures. Using a single 
integrated model, NetSurfP-2.0 predicts solvent accessibility, secondary structure, 
structural disorder, interface residues and backbone dihedral angles for each residue 
of the input sequences. 
We assessed the accuracy of NetSurfP-2.0 on several independent validation 
datasets and found it to consistently produce state-of-the-art predictions for each of 
its output features. In addition to improved prediction accuracy the processing time 
has been optimized to allow predicting more than 1,000 proteins in less than 2 hours, 
and complete proteomes in less than 1 day.  
 
INTRODUCTION 
The Anfinsen experiment, showing that the structural characteristics of a protein are 
encoded in its primary sequence alone, is more than 50 years old (1). As a practical 
application of it, several methods have been developed over the last decades to 
predict from sequence only several protein structural features, including solvent 
accessibility, secondary structure, backbone geometry, disorder, and interface 
residues (2-7). These tools have tremendously impacted biology and chemistry, and 
some are among the most cited works in the field. NetSurfP-1.0 (8) is a tool 
published in 2009 for prediction of solvent accessibility and secondary structure 
using a feed-forward neural network architecture. Since then, deep learning 
techniques have affected the application of machine learning in biology expanding 
the ability of prediction tools to produce more accurate results on complex datasets 
(9-16). 
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Here we present NetSurfP-2.0, a new extended version of NetSurfP, that uses a 
deep neural network approach to accurately predict absolute and relative solvent 
accessibility, secondary structure using both 3- and 8-class definitions (17), 
structural disorder (18), φ and ψ dihedral angles, and interface residues of any given 
protein from its primary sequence only. By having an integrated deep model with 
several outputs, NetSurfP-2.0 can not only significantly reduce the computational 
time, but also achieve an improved accuracy that could not be reached by having 
separate models for each feature. In fact, when assessed on different validation sets 
with less than 25% sequence identity to any protein used in the training, its accuracy 
was consistently at pair or better than that of other state-of-the-art tools 
(3,4,15,19,20). In particular, we observed a significant increase in the accuracy of 
solvent accessibility and secondary structure over all the other tested methods.  
 
To further improve its efficiency, NetSurfP-2.0 uses a different approach to make 
predictions for small and large sets of sequences, without compromising its 
accuracy. It has a user friendly interface allowing non-expert users to obtain and 
analyse their results via a browser, thanks to its graphical output, or to download 
them in several common formats for further analysis.  
 
 
MATERIALS AND METHODS 
We describe briefly the dataset and method used for training NetSurfP-2.0, and the 
validations performed.  
  
Structural dataset 
A structural dataset consisting of 12,185 crystal structures was obtained from the 
Protein Data Bank (PDB) (21), culled and selected by the PISCES server (22) with 
25% sequence similarity clustering threshold and a resolution of 2.5 Å or better. To 
avoid overfitting, any cluster containing sequences from the validation datasets (see 
later for details) was removed, as well as peptide chains with less than 20 residues, 
leaving 10,837 sequences. Finally, we randomly selected 500 sequences (test 
dataset) to be left out for early stopping and parameter optimization, leaving 10,337 
sequences for training. 
  
Structural Features 
For each chain in the training dataset we calculated its absolute and relative solvent 
accessibility (ASA and RSA, respectively), 3- and 8-class secondary structure 
classification (SS3 and SS8, respectively), and the backbone dihedral angles φ and 
ψ using the DSSP software (17). Interface residues were defined as all the residues 
in multi-chain complexes with an observed difference of more than 1 Å² between the 
ASA calculated on the individual chain and the ASA calculated on the whole 
biological unit defined in the PDB database. 
Finally, each residue that was present in the chain refseq sequence, but not in the 
solved structure, was defined as disordered. It is important to mention that 
disordered residues cannot be annotated with any of the other features, since no 
atomic coordinates are available for these residues. 
  
Protein sequence profiles 
NetSurfP-2.0, likewise its predecessor, exploits sequence profiles of the target 
protein for its prediction. We used two different ways of generating such profiles. The 
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first exploits the HH-suite software (23), that runs quickly on individual sequences, 
while the second uses the MMseqs2 software (24), that is optimized for searches on 
large data sets. In both cases, the profile-generation tools are run with default 
parameters, except MMseqs2 which used 2 iterations with the `--max-seqs` 
parameter set to 2,000. 
  
Deep Network architecture 
The model was implemented using the Keras library. The input layer of the model 
consists of the one-hot (sparse) encoded sequences (20 features) plus the full HMM 
profiles from HH-suite (30 features in total, comprising 20 features for the amino acid 
profile, 7 features for state transition probabilities, and 3 features for local alignment 
diversity), giving a total of 50 input features. This input is then connected to two 
Convolutional Neural Network (CNN) layers, consisting of 32 filters each with size 
129 and 257, respectively. The CNN output is concatenated with the initial 50 input 
features and connected to two bidirectional long short-term memory (LSTM) layers 
with 1024 nodes (figure 1, panel A). 
 
Each output (RSA, SS8, SS3, φ, ψ, disorder, and interface) is calculated with a Fully 
Connected (FC) layer using the outputs from the final LSTM layer. RSA is encoded 
as a single output between 0 and 1. ASA output is not directly predicted, but 
calculated by multiplying RSA and ASAmax (25). SS8, SS3, disorder, and interface 
are encoded as 8, 3, or 2 outputs with the target encoded as a sparse vector (target 
is set to 1, while rest of the elements are 0). φ and ψ are each encoded as a vector 
of length 2, where the first element is the sine of the angle and the second element is 
the cosine. This encoding reduces the effect of the periodicity of the angles (26), and 
the predicted angle can be calculated with the arctan2 function. 
  
Training 
The training was performed using minibatches of size 15. The individual learning rate 
of each neuron was optimized using the Adam function (27). Early stopping was 
performed on the test dataset. Since the different target values for each output have 
different distributions, a weighted sum of different loss functions were used: SS8, 
SS3, disorder, and interface use cross entropy loss, while RSA, φ, and ψ use mean 
squared error loss. Weights were adjusted so each loss contribution was 
approximately equal and then fine-tuned for maximum overall performance. When 
the target value for a feature of a given residue was missing, e.g. for secondary 
structure of disordered residues, or φ angles of N-terminal residues, the loss for that 
output was set to 0. 
  
Evaluation  
The final two models trained with the HH-suite and MMseqs2 profiles, respectively, 
were tested on 3 independent datasets: the TS115 (115 proteins) and CB513 
datasets (513 protein regions from 434 proteins) (28) and a dataset consisting of all 
the free-modeling targets (21 proteins) at the last CASP 12 experiment (29). No 
protein with more than 25% sequence identity to the proteins in these datasets was 
present in the training. Disorder prediction was not performed on the CB513 dataset, 
since it contains very few disordered regions. 
We used different metrics to evaluate each feature: Pearson’s correlation coefficient 
(PCC) for solvent accessibilities, Q3 and Q8 accuracy for SS3 and SS8 respectively 
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(15), mean absolute error in degrees for φ and ψ angles (MAE), and Matthew’s 
correlation coefficient (MCC) for interface and disorder. 
 
 
 
WEB INTERFACE 
To use NetSurfP-2.0 (http://services.bioinformatics.dtu.dk/service.php?NetSurfP-
2.0), only the sequences of the proteins of interest in fasta format are required. Up to 
4,000 sequences or 4,000,000 residues overall can be submitted per job. Only 
amino acid sequences are accepted. For submissions of less than 100 sequences, 
the HH-suite model is used, the MMseq2 model otherwise. Upon submission, a 
queuing page appears. The user can either wait until the job is finished and the 
results will automatically be displayed, or, for larger submissions which might take up 
to a few hours to complete, the user has the option to provide an email address and 
the result page link will be emailed when the job is completed. 
The NetSurfP-2.0 output page (figure 2) contains a navigation bar with various tabs. 
The “Server Output” tab shows each individual chain result as a graphically 
annotated sequence. The protein sequence is on the top, and below it is the RSA 
value of each residue: residues with RSA of more than 25% are displayed in red and 
with positive values, residues with less than 25% is in blue and with negative values. 
Below this, there is a representation of 3 state secondary structure predictions with 
different symbols for helices (in red/orange), strands (purple) and loops (pink). The 
next line represents the disorder probability as a grey ribbon, with a thicker ribbon 
representation for residues with higher disorder score. Finally, the sequence 
numbering according to the submitted sequence comes last. When hovering on a 
specific residue in the sequence, all predictions are displayed as a tooltip. For larger 
jobs, not all the sequences are displayed at once. It is possible to browse through 
the results by either clicking on the page numbers at the bottom of the page, or by 
using the “Search protein ID’s” textbox on the top right. Individual results can be 
downloaded by clicking on the grey “Export” button on top of each sequence. The 
button “Export all” on the top right allows exporting all the results at once. The results 
can be saved in Json, csv, or NetSurfP-1.0 format, or as a combined zip containing 
all of the above formats and all the files generated for the prediction. 
All the most common browsers are supported. A more detailed description of the 
web server can be found on the NetSurfP-2.0 Help page.  
 
 
RESULTS 
We have compared the performance of NetSurfP-2.0 to other state-of-the-art tools 
with similar functionality: NetSurfP-1.0 (8), Spider3 (4), SPOT-Disorder (3), RaptorX 
(15,20), and JPred4 (19). It should be noticed that NetSurfP-2.0 did not include the 
validation datasets in its training.  
In order to check whether the results of the methods are significantly different, we 
calculated a p-value for each feature by using a pairwise Student’s t-test on the 
results of the two methods. Results are presented in table 1. 
NetSurfP-2.0 outperforms all other methods in all the tests. The largest 
improvements are observed for solvent accessibility and disorder predictions.  
Both the HH-suite and MMseqs2 models perform similarly on all datasets tested. 
However, they have very different running time: the runtime on a single protein 
sequence for the HH-suite model is approximately 2 minutes, but it scales linearly 
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with the number of sequences. MMseqs2, conversely, is slower for small datasets, 
but on large datasets it provides a speed-up of up to 50 times and the ability to 
parallelise on multiple processor (figure 1, panel B). NetSurfP-2.0 uses the HH-suite 
model for searches of less than 100 sequences, and the MMseqs2 model otherwise, 
thus offering a good trade-off between computation time and resource demand, 
without sacrificing the method’s accuracy. 
An example of the ASA and SS3 predictions for the human Orotate 
phosphoribosyltransferase (OPRTase) domain, displayed on its solved structure 
(PDB id 2WNS) is illustrated in figure 3. 
 
DISCUSSION 
The NetSurfP-2.0 web server provides, to the best of our knowledge, the state-of-
the-art sequence-based prediction for solvent accessibility, secondary structure, 
disorder, and backbone geometry. We believe that the high accuracy of the method 
is achieved as a result of the combination of the server architecture and the careful 
integration of different structural data. 
By training a weight-sharing integrated model with several structural features, we 
improve the accuracy of disorder and interface residues with respect to models 
trained on individual features. We believe that this improvement is due to a more 
robust and informative internal state of the system, which is extremely valuable for 
features where only a few positives are present on average.  
This integration was possible because we used a proper representation of the 
structural data. Other tools are not trained on the real protein sequences, but on the 
residues that are observed in the solved structure. In this way, the models are 
presented with cases that are neither physically nor biologically meaningful, such as 
residues divided by a disordered region, that are far apart in primary and tertiary 
structure but presented to the model as consecutive. In contrast, by using a recently 
developed strategy (12), we can train the model on all residues, including the 
disordered ones, thus increasing the accuracy of annotated features in the data and 
reduce the frustration during training. 
Our model predicts also residues that are part of interfaces. In the last few years, a 
plethora of methods exploiting evolutionary-derived constraints to derive reside-
residue interactions have been developed. These methods have good performance if 
sufficiently large alignment for both interacting proteins can be produced. If this is not 
the case, for example for proteins with few known homologs, or if only one of the 
interacting partners is available, our method presents a valuable alternative to 
identify interface residues. 
Thanks to its accuracy, its fast computation time, and its easy and intuitive interface, 
we believe that NetSurfP-2.0 will become a valuable resource that will aid 
researchers both with and without extensive computational knowledge to analyse 
and understand protein structure and function. 
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TABLE AND FIGURES LEGENDS 
 
 

CASP12 
RSA 
[PCC] 

ASA 
[PCC] 

SS3 
[Q3] 

SS8 
[Q8] 

Disorder 
[MCC] 

Phi 
[MAE] 

Psi 
[MAE] 

Interface 
[MCC] 

NetSurfP-2.0 
(mmseqs) 0.726 0.735 0.820 0.703 0.660 20.3 31.8 0.063 
NetSurfP-2.0 
(hhblits) 0.725 0.737 0.824 0.711 0.604 20.0 31.2 0.038 

NetsurfP-1.0 0.617 0.641 0.709           

Spider3   0.688 0.791   0.582 21.6 33.2   

RaptorX     0.786 0.661 0.621       

Jpred4     0.760           

TS115 
RSA 
[PCC] 

ASA 
[PCC] 

SS3 
[Q3] 

SS8 
[Q8] 

Disorder 
[MCC] 

Phi 
[MAE] 

Psi 
[MAE] 

Interface 
[MCC] 

NetSurfP-2.0 
(mmseqs) 0.778 0.797 0.857 0.750 0.656 17.2 25.8 0.311 
NetSurfP-2.0 
(hhblits) 0.775 0.795 0.853 0.744 0.663 17.5 26.5 0.319 

NetsurfP-1.0 0.661 0.691 0.779           

Spider3   0.769 0.839   0.575 18.5 27.3   

RaptorX     0.822 0.716 0.567       

Jpred4     0.767           

CB513 
RSA 
[PCC] 

ASA 
[PCC] 

SS3 
[Q3] 

SS8 
[Q8] 

Disorder 
[MCC] 

Phi 
[MAE] 

Psi 
[MAE] 

Interface 
[MCC] 

NetSurfP-2.0 
(mmseqs) 0.794 0.807 0.854 0.723   20.1 28.0 0.283 
NetSurfP-2.0 
(hhblits) 0.788 0.803 0.853 0.720   20.2 28.6 0.321 

NetsurfP-1.0 0.700 0.723 0.788           

Spider3   0.797 0.845     20.4 28.2   

RaptorX     0.827 0.706         

Jpred4     0.779           
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Table 1. Results of the method’s validation on independent datasets. The performance of NetSurfP-

2.0 (using HH-suite and MMSeqs2 profiles), NetSurfP-1.0, Spider3, SPOT-disorder, RaptorX, and 

JPred4, is displayed for the CASP12, TS115, and CB513 datasets. SPOT-disorder and Spider3 

predictions are reported as a single row. The following performance metrics are used: Pearson 

Correlation Coefficient (PCC), Matthew’s Correlation Coefficient (MCC), Q3 and Q8 accuracy, and 

mean absolute error (MAE) in degrees. The different predicted features are reported in the column 

header, together with the corresponding performance metric. For each feature and each dataset, the 

best score is reported in bold. Scores in italics are the ones for which no significant difference with 

respect to the top scoring method (calculated using a 2-tailed paired Student’s t-test and a 

significance threshold of 0.05) is observed. Greyed-out cells represent predictions that were not 

performed, either because not part of a method’s output, or because the feature was not present in 

the corresponding dataset. 

 

Figure 1. Network architecture and computation time plot. In panel the Network architecture is shown. 

N is the number of amino acids in the target protein sequence. Each box represents a different layer 

of the network, from the input (bottom) to the output (top), and the corresponding number of 

neurons/filters. The arrows represent the features that are passed between consecutive layers. The 

computation time per sequence of NetSurfP-2.0 is reported in Panel B. The x-axis represents the 

number of input sequences (logarithmic scale), the y-axis the average computation time in seconds 

per sequence. The method implementation using HH-suite profiles is reported as a grey dashed line, 

and the one using MMSeqs2 profiles is reported as a solid black line. 

 
 
Figure 2. NetSurfP-2.0 web server result page. 
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Figure 3. NetSurfP-2.0 predictions mapped on the OPRTase domain structure. Panel A represents 
the predicted ASA in a color gradient from blue (low) to red (high). Panel B represents SS3 Helix, 
Strand, and Coil classes in orange, purple, and pink, respectively. The actual secondary structure of 
the protein is displayed in the carton representation of the structure. Both color codings are consistent 
with the web server graphical output. 
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