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SUMMARY

The skin functions as the primary interface between
the human body and the external environment. To
understand how the microbiome varies within urban
mass transit and influences the skin microbiota, we
profiled the human palm microbiome after contact
with handrails within the Hong Kong Mass Transit
Railway (MTR) system. Intraday sampling time was
identified as the primary determinant of the variation
and recurrence of the community composition,
whereas human-associated species and clinically
important antibiotic resistance genes (ARGs) were
captured as p.m. signatures. Line-specific signa-
tures were notably correlated with line-specific
environmental exposures and city characteristics.
The sole cross-border line appeared as an outlier
in most analyses and showed high relative abun-
dance and a significant intraday increment of clini-
cally important ARGs (24.1%), suggesting potential
cross-border ARG transmission, especially for tetra-
cycline and vancomycin resistance. Our study pro-
vides an important reference for future public health
strategies to mitigate intracity and cross-border
pathogen and ARG transmission.

INTRODUCTION

The skin is not merely a physical barrier between the body and
the environment but functions as a complex contact interface
for a rich and influential microbial community. Indeed, the human
skin and its microbial residents play an essential role in health
and disease. The human skin microbiome has been shown to

have a unique signature and to maintain stable characteristics
at the strain level over time (Oh et al., 2016). Despite this
resistance to colonization and disruption, the skin is a source
of potential infection, especially in vulnerable individuals. For
instance, various Propionibacterium acnes strains were identi-
fied as potential determinants for acne, the most common skin
condition (Fitz-Gibbon et al., 2013). Skin from over 90% of atopic
dermatitis (AD) patients is highly colonized with the pathogen
Staphylococcus aureus (Leyden et al., 1974), whereas Staphylo-
coccus epidermidis was found to modulate the host immune
response to inhibit S. aureus (Cogen et al., 2010a, 2010b). The
microbial composition of the human skin can be affected by
our lifestyle choices, including cohabitants, dwelling environ-
ment, and even our pets (Lax et al., 2014). In high-density mega-
cities, mass transit systems also serve as platforms for the ex-
change of microbes between millions of humans and the built
environment (Hong Kong’s Mass Transit Railway [MTR] has a
daily ridership of around 4.7 million, for example; MTR Corpora-
tion, 2017), induced by the high mobility of the population and
constant interaction through skin-surface contact. Mass transit
systems therefore represent ideal targets for studying the
composition and dynamics of urban microbial communities.
They constitute passive samplers with unique niches and a
potentially higher propensity for microbial accumulation, expo-
sure, and transmission, created through large concentrations
of people from diverse urban backgrounds interacting in rela-
tively confined spaces (Be et al., 2015).

To characterize the urban metro system microbiota, several
16S rRNA-based studies have been conducted in high-density
cities, including New York and Hong Kong (Leung et al., 2014;
Robertson et al., 2013). A recent shotgun metagenomic study
performed in the New York metro system characterized the
citywide urban microbial geographic distribution using sam-
ples collected from station surfaces (Afshinnekoo et al., 2015).
This study reported potential health risks associated with the

1190 Cell Reports 24, 1190-1202, July 31, 2018 2018 The Author(s). A

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

08-08-2018



m= s ER

SHENZHEN *—r— oo

FA_ pau

T T NN W R TR

ISLAND "CENTRAL

Figure 1. The MTR System and Sampling Procedure

mEL AR

me oaoam

ISLAND _on

(A) The MTR system and eight urban lines used in this study (excluding the Airport Express line and Disneyland Resort branch). The Central-Hong Kong station
and the cross-border rail stations connecting with the MTR and the Shenzhen metro system are labeled.
(B) The sampling procedure included handwashing, handrail touching for 30 min, swabbing, and sample preservation.

microbial communities found in the stations, including the pres-
ence of pathogens and antibiotic resistance as well as constant
daily recurrence in the vast bacterial ecology. A similar study of
the Boston metro system (Massachusetts Bay Transportation
Authority [MBTA]) highlighted that different surface types and
materials are occupied by different microbes with high variation
in functional capacity and pathogenic potential (Hsu et al., 2016).
Recently, more studies of metro and urban microbiomes have
started under the collaborative framework of the Metagenomics
and Metadesign of the Subways and Urban Biomes (MetaSUB)
International Consortium (MetaSUB International Consortium,
2016). Previous metagenomic studies of metro systems were
conducted by sampling directly from surfaces or indoor air
masses. However, to obtain a more focused picture of how mi-
crobial communities occupying the surfaces in a metro system
may affect human health, studies focusing on the contact inter-
face—by sampling the skin microbiome —are of significant inter-
est. Ultimately, a key objective of performing microbial profiling
in a transit system is to identify possible health-related risks,
as evidence has accumulated of the transmission of clinically
significant disease from surface to hand (Bhalla et al., 2004;
Weber et al., 2010) as well as community-acquired antibiotic-
resistant infections (Ho et al., 2007; Spellberg et al., 2008; Van-
denesch et al., 2003). Therefore, characterizing shifts in the
microbial consortia an individual carries after using mass transit
is amore direct investigation than intensive sampling of accumu-
lations and communities on built surfaces (Gibbons et al., 2015;
Prescott et al., 2017; Zimmerman et al., 2014). Furthermore,
because mass transit is characterized by intermittent passenger
loads (fluctuating over peak and off-peak hours) and inherent
tidal effects between downtown and uptown regions, time se-
ries-based studies with distinct sampling times throughout the

https://reader.elsevier.com/reader/sd/8816AC0012C1EDBBOCA9E9E4764C20D469...

day and repeated sampling days offer a more reliable and dy-
namic view of the diurnal flux of microbial transmission and the
propensity of recurrence induced by the variation in traffic
flow. Finally, investigating the correlations between microbial
composition and the underlying geographical or topological
characteristics of different metro lines as well as their connectiv-
ity to the underlying urban matrix (street networks, buildings, and
public spaces) is crucial because these connections govern hu-
man mobility and interactions in high-density environments and,
hence, influence the rate of microbial contact and transmission
(Adams et al., 2015). Several interesting questions that may
inform public health surveillance and urban planning were raised.
What is the composition of the microbiome and its potential
health risk (e.g., antibiotic resistance and pathogenicity) we
may acquire when exposed to mass transit? Will the microbiome
inherit tidal effects of the traffic flow and vary over traveling time?
How might urban density and morphology influence the micro-
bial composition and health risk it carries? To what extent is a
city’s unique metro microbiome influenced by connecting routes
to a neighboring metropolitan region or country?

To answer these questions, we conducted a metagenomic
study of the Hong Kong MTR system (Figure 1A) with a cross-
border rail connection to the neighboring large city of Shenzhen
in mainland China. Shotgun metagenome sequencing followed
by taxonomic and functional analysis was performed on samples
collected from the surface of human palms after contact with
metro railcar handrails (Figure 1B). Our sampling covered
different metro lines and was conducted at different time points
across the day with weekly replicates. To determine whether the
microbiome and resistome vary over the day and differ by
distinct metro lines, we looked for time-specific and line-specific
signature species and antibiotic resistance genes (ARGs),
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Figure 2. Taxonomy, Phylogeny, Community Diversities, and Dissimilarities of the MTR Microbial Communities

(A) The phylogeny and relative abundance of the most abundant species at species level. The phylogenetic tree was acquired from OpenTree 7.0 (Hinchliff et al.,
2015), with phyla indicated by the clade colors. The inner and outer heatmaps illustrate the relative abundance of the species for a.m. or p.m. samples and
different MTR lines, respectively. Triangle signs indicate whether the species is a time- or line-specific signature species. Different colors in the colored bar
demonstrate different lines for the line-specific signatures. The outermost bars represent the absolute overall abundance of the species after log transformation.
(B) Relative abundances of highly abundant bacterial phyla and their major species across different sampling times and lines.

(C) The variations of community alpha-diversities (Simpson’s index) in comparison with the relative abundance of the dominant species P. acnes over sampling
time points.

(D) The community dissimilarities of the communities from different lines and sampling times, calculated by weighted UniFrac distances, with coordinates
calculated by nonmetric multidimensional scaling (NMDS). Means of species abundances from all sampling days were calculated before the dissimilarity

calculation.

respectively, and then we attempted to track potential transmis-
sion events of ARGs. Further, to reveal how urban design could
influence microbial ecology and biosafety issues, we investi-
gated the correlations among metro network topology, ecolog-
ical features (e.g., community diversity), and health risk levels,
such as clinically important ARG abundance, ARG dissemination
potential, and pathogenic potential. Our study provides a useful
framework for obtaining a comprehensive view of mass transit
systems as modulators of human microbial contacts, informing
public health planning regarding monitoring and health risk
management.

RESULTS

Microbial Communities Acquired by MTR Exposure

Taxonomic profiles of the relative abundance were generated at
each taxonomic level for each sample (Data S1A and S1B). Most
bacterial reads were derived from four major bacterial phyla:
Actinobacteria, 51.3% + 8.5%; Proteobacteria, 26.6% + 9.3%);
Firmicutes, 11.4% + 3.0%; Bacteroidetes, 2.3% + 0.7%; and
8.4% + 1.0% for others (Figure 2A). P. acnes was the dominant
organism, accounting for 29.1% + 7.0% of the community
(Figure 2B). In the 10 most populated species, 8 were common
human and skin commensals, including P. acnes, Micrococcus
luteus, Propionibacterium humerusii, Acinetobacter baumannii,
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S. epidermidis, Escherichia coli, and S. aureus. The yeast Malas-
sezia globosa (0.72%), Enterobacteria phages (0.28%), and
Propionibacterium phages (0.13% in 27 subtypes, including 8
abundant subtypes) are the most abundant non-bacterial organ-
isms. Not surprisingly, the population of Propionibacterium
phages is positively correlated with the abundance of Propioni-
bacterium (Pearson’s correlation coefficient () = 0.72, p =
6.7e—9) and 11 Propionibacterium species, including P. acnes
(r=0.71, g = 1.7e—6). All 8 types of abundant Propionibacterium
phages co-occurred with their hosts at both genera and species
levels. To achieve sufficient resolution for analyses of phage-
host interactions and pathogenicity, strain-level taxonomic con-
struction was performed for two major species, P. acnes and
S. epidermidis, with well-documented reference strains using a
reference-based approach (Oh et al., 2014). In the 89 strains
quantified as P. acnes, C1 was identified as the leading strain
(making up 12.6% + 3.2% of the species) in 44 of the 48 samples,
followed by PA2 (6.4% + 0.6%) and P.acn17 (5.5% + 1.8%)
(Figure S1A; Data S1C). Notably, we observed that different
Propionibacterium phages showed drastic variability in their
predilection to multiple P. acnes strains. In general, the overall
abundance of Propionibacterium phages is correlated with 24
P. acnes strains (r = 0.47~0.72, g < 0.1). Specifically, phage
ATCC29399B_C shows correlation with 36 strains, followed by
PHL0O37MO02, P1.1 and P100_1, correlated with 15, 14, and
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13 strains, respectively, whereas ATCC29399B_T, P100_A,
PHLO10MO04, and P100D have only 5, 3, 1, and 0 co-occurring
strains, respectively. No strain was significantly correlated with
more than one phage subtype, suggesting strong phage-host
preferences at the strain level. For S. epidermidis, with 91 quan-
tified strains, UC7032 predominates, with a relative abundance
of 67.0% + 16.9% (Figure S1B; Data S1D). To explore the
gene content carried by strain diversities, pan-genome profiling
was performed for the 10 most abundant species using
PanPhlan (Scholz et al., 2016). Gene cluster compositions for
most species were commonly shared among samples. By using
a pathogen list compiled by different sources (Forsberg et al.,
2014; Kembel et al., 2012), we discovered three opportunistic
pathogens at very low abundance in the MTR communities:
Helicobacter pylori, Acinetobacter species (sp.) ADP1, and
Photorhabdus asymbiotica (total relative abundances of
0.004% +0.001%). At the strain level, two reported opportunistic
pathogenic isolates, P. acnes KPA171202 and S. epidermidis
RP62A, were observed with low relative abundance (2.6% =+
1.2% and 0.08% =+ 0.06% of the P. acnes and S. epidermidis
populations, respectively). The virulence factors (VFs) from these
species have shown much higher copy numbers than their
genome background (Data S2C), especially the VF category Ure-
ase (CVF221) from H. pylori (350 to the genome). This could be
aresult of statistical bias introduced by the difference in marker
selection between taxonomic profiling and VF annotation but
could also potentially suggest a much wider distribution of the
virulence genes in the community compared with the abundance
of their putative host. The different VF categories from H. pylori
also showed higher variance (0.03 to 1.89 reads per kilobase
per million reads [RPKM], respectively) compared with the VFs
from S. epidermidis RP62A (1.00 to 1.55 RPKM), suggesting
that the strain-level diversity of H. pylori might dramatically influ-
ence pathogenicity. Nevertheless, lowest common ancestor
(LCA) mapping was not suitable for strain-level pathogen quan-
tification for other taxa because of limitations of subspecies-level
phylogenetic resolution. Therefore, we marked species contain-
ing at least one reported pathogenic strain as potential opportu-
nistic pathogenic species, led by human commensals, including
P. acnes, A. baumannii, S. epidermidis, E. coli, and S. aureus,
summing up to 40.13% = 6.25% of the whole community (and
11.01% + 2.36% when excluding P. acnes) (Data S2B).

Microbial Communities Significantly Differ by Sampling
Time

Sampling time (a.m. versus p.m.) was identified as the major
determinant of the shifts and recurrences in community compo-
sition and diversity. Simpson’s alpha-diversity indices notably
decreased from a.m. to p.m. (0.90 to 0.85, paired t test, p =
1.6e—4; Table S1), accompanied by a consistent increase in
P. acnes abundance (25.7% to 32.5%, paired t test, p =
2.1e—4; Figures 2B and 2C). The ER line, the only cross-border
line connecting to Shenzhen in mainland China, appears as the
only outlier. At the species level, the abundances of 140 species
significantly decreased from a.m. to p.m. (paired t test, p < 0.05),
with a median rank of their relative abundance in all analyzed
species of 419.5/744 (Figure 3B). We defined these species as
a.m. signature species. In only 48 species, the population
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expanded from a.m. to p.m., including Enterobacteria phages
and Propionibacterium phages in 5 subtypes, with a median
rank of 232/744 (Figure 3B). These species were defined as
p.m. signature species. The Matthew effect can be used as an
analogy for delineating the dynamics of microbial communities
“the rich (a.m.) get richer (p.m.) and the poor get poorer” in their
abundance (Merton, 1968). By analyzing the pathogenicity of the
time-specific signature species, only 3 potential opportunistic
pathogenic species of low abundance (<0.3%) were a.m. signa-
tures, whereas 11 were p.m. signature species, led by P. acnes
and S. mitis. The total abundance of potential opportunistic path-
ogenic species is also dramatically increased (paired t test, p =
5.9e—6) but becomes insignificant when excluding P. acnes
(paired t test, p = 0.25; Figure 3A). To determine the driver(s) in
the niche expansion of P. acnes, we performed comparisons
at the individual strain level. SK137 and hdn-1 significantly
increased from a.m. to p.m., whereas HLO35PA1 decreased
(Wilcoxon signed-rank test on ranks, p < 0.05). Notably, none
of these altered strains have been previously reported as patho-
genic strains. When assigning the species to ecological cate-
gories (including different habitats and physiological traits;
Data S3A) using the PATRIC database (Wattam et al., 2014),
we detected a significant increase p.m. for the categories of
skin-associated, disease and/or human disease-related, hosted
and/or human-hosted, non-motile, and salinity-tolerant species
and a decrease in marine species (as well as in soil, aquatic,
plant-hosted, and motile species when removing the outlier ER
line) (paired t test, p < 0.05; Figure 3A). Interestingly, for some
non-human-associated species with high abundance, we also
observed a high fluctuation in abundance regardless of sampling
time points. Such examples include the fourth most abundant
species, Burkholderia, a nitrogen-fixing soil organism, with a
relative abundance of 1.97% =+ 3.94%, Bradyrhizobium elkanii
(19™, 0.48% + 1.64%), and Labrenzia alexandrii (20", 0.48% =+
0.96%). Burkholderia and L. alexandrii showed remarkable vari-
ance in abundance among the three sampling days (ANOVA test,
p < 0.05, Burkholderia: 0.00%, 0.86%, and 5.04%; L. alexandlii:
0.91%, 0.53%, and 0.00% for the 3 days). B. elkanii had
extremely high abundance only in day 1 p.m. samples in the
ER and MOS lines (10.47% and 4.53%; the relative numbers
were 1.07% and 1.31% in a.m. compared with 0.13% as the
mean for other samples). The PATRIC categories of animal-
hosted species, aquatic species, marine species, non-antimi-
crobial resistance (AMR) species, thermo-tolerant species, and
species with multiple altitude preferences (1,000 m, 10 m, and
1 m), showed instability among the 3 sampling days, and none
of these categories are human-related. One possible explanation
is that this variation could be driven by non-human factors, such
as humidity and aerosols, because weather conditions during
the sampling days differed (Table S1). Based on this evidence,
we speculate that daily traffic flow is the driving factor in shaping
the microbial communities of a public transit system. Human-
associated species are universally more abundant than non-
human associated species, and they tend to become more
abundant under high traffic density during the day; conversely,
species with low relative abundance are unlikely to be human
commensals, and they are further outcompeted by the abundant
human-associated species during high-traffic hours before
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Figure 3. Time-Specific and Line-Specific Signatures and Their Relative Abundance
Relative abundances are scaled by rows to Z scores, with blue to red colors representing low to high relative abundance.
(A) Heatmap for time-specific signatures. The colors of the left color bar indicate the leading time point. Row label colors and marks represent the leading time

point and statistical significance.

(B) Density plot for the rank distributions of the a.m. (blue) or p.m. (red) signature species among 744 analyzed species. The distribution of p.m. signature species

is left-skewed.

(C) Number of line-specific signature species and signature ARG families among a.m. or p.m. subsets, respectively, and among all samples.
(D) Heatmap for line-specific features for a.m. or p.m. subsets and all samples. Row label colors suggest whether the significance was observed in the a.m. or
p.m. subset only or among all samples. Colors in the left color bar indicate the leading line of the feature.

recovering their ecological niche during non-traffic hours. Natu-
rally, the abundant species show higher inter-day stability in
their composition, whereas, conversely, the less abundant
non-commensal species show greater stochastic variations
among different sampling days.

Microbial Communities Are Line Dependent

In addition to sampling time, community diversities (Table S1)
and dissimilarities revealed that the microbial compositions
were also highly influenced by the metro line features (Figure 2D).
The distances among communities from different lines become
smaller from a.m. to p.m., except for the ER line, the only
cross-border line linked to mainland China, which is also the
only interchangeable line of the most isolated line in the MTR
system, the MOS line. The coordinates of the a.m. and p.m. com-
munities from the MOS line locate closely to the p.m. and a.m.
communities from the ER line, respectively. The coordinate
swapping may reflect the effect of the traffic tide induced by
the unique interchange. IndVal tests (Dufrene and Legendre,
1997) were performed to identify line-specific signature species:

1194 Cell Reports 24, 1190-1202, July 31, 2018

species that are relatively abundant only in one line compared
with all other lines. Line-specific signatures were investigated
among all samples or among only a.m. or p.m. samples. In
general, more a.m. signature species (88) could be detected
than p.m. signatures (59) or all-day signatures (78) (Figure 3C)
because the community dissimilarities dramatically decreased
p.m. The most isolated line, MOS, showed a markedly greater
number of signature species (565) both a.m. and p.m. as well as
the highest community diversity a.m. (one-against-all t test, p =
8.0e—5; Figure 3D). The ER and KT lines were also characterized
by 20 and 16 a.m. signature species, respectively, before losing
their discriminatory power p.m. The stability of the signature
species is also line-dependent: only 21 of the 88 a.m. signature
species could retain specificity p.m., 17 of which are MOS line
signatures; only 4 species are signatures for the other 7 lines.
When assigning species into PATRIC categories, line-specific
signature categories could be observed (one-against-all Krus-
kal-Wallis test on ranks, p < 0.05; Figure 3D). The MOS and ER
lines reported the highest abundance of soil species and species
with AMR in all samples but motile species only p.m. The MOS

08-08-2018



line, which is an entirely aboveground ground line running along-
side the Shing Mun Channel, a polluted brackish river, is the
most populated line for aquatic species a.m. and sewage spe-
cies both a.m. and p.m. The WR line, which passes through a
mountain region in the New Territories, showed the highest
abundance of the species with a habitat preference for altitude
around 1,000 m, whereas a low abundance of these environ-
mental categories was observed in underground urban lines
such as ISLAND, TW, and TKO. Species that were originally iso-
lated in Hong Kong were most abundant in the TW line, an urban
line with the highest traffic volume (Table S2), which connects the
densely populated areas in Kowloon with the Central station on
Hong Kong Island. All of these observations regarding microbial
composition are associated with line-specific environmental
exposure. To estimate interline transmissions and track potential
sources of the heterogeneously mixed p.m. communities, we
employed the Bayesian SourceTracker algorithm (Knights
et al., 2011) to estimate the contributions of the a.m. commu-
nities, assuming that the p.m. communities (sink communities)
originated, transmitted, and were mixed from 8 independent
line a.m. communities (source communities), and each line
a.m. community is contributing to a particular proportion of the
p.m. communities. Not surprisingly, microbial relocation be-
tween the ER and MOS lines was detected at a high level. The
a.m. community of the ER line contributes a notable proportion
to multiple p.m. communities, including the MOS, TC, WR, and
TW lines (Figure S2). The two lines with the longest interchange
routes to the ER line, the TKO and ISLAND lines, are relatively
less colonized by the a.m. community of the ER line. As the
most isolated line, the MOS line contributes a very limited per-
centage to all non-ER lines, supporting its capacity to retain
the specificity of signature species p.m.

The MTR Resistome and Functionome

The unique characteristics of the ER line observed in the above
analysis triggered our interest in the possibility of cross-border
transmission of ARGs via the MTR system. Intensive analysis
of the resistome profile in the MTR lines was performed to
explore the ARG mechanism (Data S3B), gene family (Gibson
et al., 2015; Data S3C), previously annotated clinical relevance
(Munck et al., 2015), and dissemination potential (STAR
Methods). In general, antibiotic efflux (469.2 + 182.6 RPM [reads
per million reads]) was revealed as the most abundant character-
ized mechanism in the MTR communities, followed by target
protection (146.3 + 26.7) and inactivation (137.3 + 35.3),
target alteration (69.1 + 13.5), and replacement (26.7 + 9.8).
Overall, we identified 136 ARG families (the overall abundance
was 322.6 + 62.1 RPM), including 24 clinically important ARG
families (14.1 + 5.1 RPM) (Data S3C). The most abundant ARG
families were fluoroquinolone-resistant DNA topoisomerase
(42.8 + 6.6 RPKM), aph(3’) double prime (34.5 + 5.1), RND anti-
biotic efflux pump (13.4 + 5.8), ABC antibiotic efflux pump
(13.2 £ 3.0), and macB (9.2 + 2.9). The most abundant clinically
important ARG families were ermC (3.6 + 2.7 RPKM), msrA
(8.3 = 2.0), tetK (1.7 = 0.7), ant4(4’)-la (1.5 + 0.6), and tetM
(1.0 = 0.4). The abundance of clinically important ARG families
showed higher inter-sample variability than non-clinical families,
suggesting a potentially higher effect of human activities. There-
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fore, a systematic analysis of the time- and line-specific signa-
ture ARG families was a logical follow-up.

The p.m. Signature of the ARG Families Is Highly
Associated with Human Activities and Clinical Antibiotic
Practice

When comparing the resistome between a.m. and p.m. commu-
nities, no differentiation was captured in the abundance of the
ARG mappable reads. Similarly, the abundance of clinically impor-
tant ARGs and community-wide dissemination potential increased
modestly without statistical significance (Figure 3A). The commu-
nity-wide dissemination potential was estimated from the horizon-
tal gene transfer (HGT) rate of each ARG family (Data S4; STAR
Methods). At the ARG family level, the abundance of 4 ARG fam-
ilies significantly decreased from a.m. to p.m. (@nt2"), ant@3"),
aac(6')-1b, and SubclassB2; all non-clinical), whereas 9 families
increased, including clinically important families like tetM,
ermC, vanB, tetracycline resistance ribosomal protection protein
(tetRRPP), tetA-B, tetM-tet\W-tetO-tetS (tetMWOS), vanD, and
mprF (paired t test, p < 0.05; Figure 3A). Resistance against the
clinically widely used antibiotics tetracycline, vancomycin, eryth-
romycin, and methicillin was highly observed in p.m. communities.
These observations led us to pose a new question: is the increase
in clinically relevant antibiotic resistance contributed only by the
colonization process of human-associated species, which occurs
equally in all lines, or it is also accompanied by inter-line ARG
dispersion carried by the transmission of line-specific signature
species? Toanswer this question, we investigated the line-specific
ARG signatures and taxonomic contributors.

The ER Line’s Resistome Signature Suggests Potential
Cross-Border Antibiotic Resistance Trar ission
Besides sampling time, we also examined the specific character-
istics of each line and observed that the MOS line has a signifi-
cantly higher abundance of all ARG reads. The highest
abundance of clinically important ARGs and highest commu-
nity-wide dissemination potential were observed in the TC and
ER lines (one-against-all Kruskal-Wallis test on ranks, p < 0.05;
Figure 3D). The ER and RC lines showed a high abundance of
the ARG family blal beta-lactamase repressor gene as the major
contributor to the high dissemination potential. The MOS line is
ranked third in terms of community-wide dissemination potential,
driven by the high HGT rate of the aph(3’) family. These 3 lines are
uptown lines with predominantly aboveground tracks. Similar to
the line-specific signature species, the ER and MOS lines also
lead in terms of number of signature ARG families: 5 for the ER
line, 4 for the MOS line, and only one for each of the other lines
(emrA for the TC line) (Figure 3C). The MOS line has more non-
clinical signature ARG families (ant(3”), SubclassB3, and GES)
and only one clinically relevant family (vanX); in contrast, all ER
line signature ARG families are related with clinically used antibi-
otics (Figure 3D), and 4 of 5 (tetA, tetO, tetRRPP, and tetMWOS)
are involved in resistance against tetracycline, besides one
against vancomycin (vanC). Among these 5 families, 4 (excluding
tetMWOS) are a.m. signatures without specificities p.m.

Busy Lines Do Not Show a Higher Abundance of
Clinically Important ARGs or Higher ARG Dissemination
Potential

To disclose whether civic characteristics such as urban den-
sity and metro network topology are also influencing the
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Figure 4. Correlations between Line Biological Observations and Geographical or Topological Characteristics
(A) The topological network of the MTR system, with the node color, node size, edge color, and edge width representing the node degree, betweenness centrality,

metro line, and edge betweenness.

(B) Movement potential (betweenness centrality) of the hybrid MTR train-road network at a 200-m spatial scale modeled by sDNA (Cooper and Alain, 2015).

(C) Associations between biological observations and geographical or topological characteristics. A red color indicates a positive correlation and green a
negative correlation. A brighter color suggests a significant correlation by using all samples individually in the coefficient calculation, whereas a darker color
suggests a significant correlation by using line means. For the MTR topology, a cell is marked as significant when at least one feature (mean node degree, mean
betweenness centrality, mean closeness centrality, or mean edge betweenness) is significantly associated with the biological observation. For road connectivity,
a cellis marked as significant when the biological observation is significantly correlated with the SDNA movement potential (betweenness centrality) at more than

one spatial scale (from 100 m to 500 m).

(D) Some examples of significant correlations between one biological observation and one geographical or topological characteristic, with different dot and fitting
line colors indicating different distinct times (a.m., p.m., or the increment from a.m. to p.m.).

microbial diversity, line signatures, resistome composition, and
its transmission potential, we performed an additional associ-
ation analysis using a hybrid urban movement network opera-
tionalized by integrating the MTR topological network (Fig-
ure 4A; Data S5A), the adjoining street network linked to
MTR station entrances (Figure 4B; Figure S3; Data S5B), the
traffic volume (The Transport and Housing Bureau of the Gov-
ernment of the Hong Kong Special Administrative Region,
2014; Table S2), as well as the distances to the Central station
and Shenzhen (mainland China) (Data S5A). The distance to
Central station was used to distinguish downtown and uptown
lines, whereas the distance to Shenzhen was introduced to
capture intercity transmission events. We correlated these
features with community-wide and health-related observa-
tions, including community diversity, ARG abundance, clini-
cally important ARG abundance, and community-wide ARG
dissemination potential. At the community scale, diversity (in
Simpson’s index) was observed to be positively correlated
with the line’s average distances to Central station (Figures
4C and 4D; significant p.m., Pearson’s correlation coefficient

1196 Cell Reports 24, 1190-1202, July 31, 2018

r = 0.41, p = 0.046). The diversity differences between p.m.
and a.m. (Simpson’s index p.m.—a.m.) were positively corre-
lated with the line average edge betweenness (r = 0.47, p =
0.019; Figures 4C and 4D). These findings indicate that iso-
lated or uptown lines tend to have higher community diver-
sities and greater decreases in the community diversities
during the day. In relation to the resistome, strong negative
correlations were captured between the clinically important
ARG abundance and the mean betweenness of the road con-
nectivity networks (r = —0.42 ~ —0.37, p < 0.05; Figures 4C
and 4D), whereas a negative correlation was also observed
for the community-wide ARG dissemination potential in the
a.m. samples (r = —0.48 ~ —0.41, p < 0.05; Figures 4C and
4D). There was also a strong positive correlation between
the increase of dissemination potential (p.m.—a.m.) and the dis-
tance to Central station (r = 0.44, p = 0.033; Figure 4C). Based
on these correlations, the isolated uptown lines tend to have a
higher abundance in clinically important ARGs and ARGs with
higher dissemination potential. The distance to Shenzhen
(mainland China) was negatively correlated with the overall
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Figure 5. Comparisons of Health-Related Features among Different Microbial Communities

(A) Boxplots for the abundance of health-related features in different microbial communities, including the abundance of all ARGs (in RPMs), clinically important
ARG families (in RPMs), community-wide dissemination potential, opportunistic pathogens, and potential opportunistic pathogenic species (excluding P. acnes).
(B) The abundance of the ER line signature ARG families for all MTR and Chinese gut samples (in RPKMs).

(C) The ranks of the ER line signature ARG families among all observed ARG families for all MTR and Chinese gut samples.

ARG abundance p.m. (r = —0.48, p = 0.018; Figure 4C), as well
as its increment (weak correlation calculated from line mean
values), suggesting that lines closer to Shenzhen tend to
have higher ARG input during the day. We also detected the
correlations for three individual ER line signature ARG families
(tetO, tetA, and vanC), whose abundances were negatively
correlated with the distance to Shenzhen, especially in a.m.
communities (r = —0.63 ~ —0.31, p < 0.05; Figures 4C and
4D). The increased abundance of tetA was positively corre-
lated with distance (r = 0.50, p = 0.012; Figures 4C and 4D),
supporting that the farther away from Shenzhen, the higher
the tetA abundance that could be gained over a day, which
is consistent with our previous observations: an ER line a.m.
signature becomes a p.m.-enriched ARG family in all MTR
lines far from Shenzhen.

In addition, we conducted a comparative analysis among
diverse environmental samples from Hong Kong (including
drinking water and marine sediments) as well as gut microbial
communities of Chinese people living on the mainland, collected
from several separate studies (Guo et al., 2016; Yu et al., 2017;
Figure 5A). Not surprisingly, the microbial communities from Chi-
nese human gut samples have a significantly higher abundance
of ARGs and especially of clinically important ARGs compared
with the MTR communities (t test, p = 0.016 for ARG abundance
and 1.7e—5 for clinical ARG abundance). This observation also
meets the recent study on the sewage resistome for 15 Chinese
cities (Su et al., 2017). Clinically important ARGs were rarely
observed in drinking water and marine sediment samples.
MTR samples have the highest community-wide dissemination
potential. followed by gut samples. Because of the special attri-
butes of the ER line, we also compared the abundance of the ER
signature ARG families between the MTR samples and Chinese
human gut samples (Figures 6B and 6C). Apart from tetA (with
low abundance in both communities), the abundance and ranks
of four ER line signature families are consistently higher in the
Chinese gut samples (t test or Wilcoxon rank test, p < 0.05).

https://reader.elsevier.com/reader/sd/8816AC0012C1EDBBOCA9E9E4764C20D469...

Correlations between Species, ARG Families, and
Biosynthetic Gene Clusters
To further characterize the functionality of the microbial commu-
nities in connection to the observed resistome profile, we quan-
tified and compared the abundance of the biosynthetic gene
clusters (BGCs) (Donia et al., 2014; Data S3D), which has also
been suggested by the MetaSUB Consortium as a standard
component for urban microbiome characterization (MetaSUB In-
ternational Consortium, 2016). Among the 22 retrieved BGC
types, 3 types were identified as p.m. signature types: ladder-
ane, bacteriocin, and lantipeptide. Bacteriocin and lantipeptide
are BGC types closely related to antibiotic resistance. Six types
were identified as a.m. signature types: type | polyketide (t1pks),
trans-AT polyketide (transatpks), type lll polyketide (t3pks),
terpene, indole, and other types of polyketide (otherks) (Fig-
ure 3A). Among the 7 line-specific signature BGC types, 4
were associated with the WR line (Figure 3D). SparCC correla-
tions were calculated among BGC types and ARG families
(Data S6). The p.m. signature lantipeptide was detected to be
highly associated with multiple ARG families (Figure 6C). The
BGC types aryl polyene (arylpolyene) and homoserine lactone
(hserlactone) were also highly associated with ARG families.
Investigating the ARG co-occurring and co-excluding networks
(Figures 6A and 6B), we could observe competing modules in
both a.m. and p.m. networks: one human or clinic-associated
module with the msr, ble, mpr, erm, ctx-m, and tet families and
one non-clinical module with the ade, bae, tol, sox, cfr, rmd,
abc, and ant families. In the a.m. network, stronger co-occurring
links could be observed in the non-clinical module, whereas the
connections among the clinical families were relatively weak. In
contrast, stronger links among clinical links could be identified
in the p.m. network, whereas the non-clinical module was losing
internal connections. These observations also support our con-
clusions from the time-specific ARG analysis.

Co-occurring relationships and taxonomic links were
observed between the abundances of ARG families, BGC types,
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Figure 6. Time-Specific Network Plots for ARG Families, BGC Types, and Their Taxonomic Contributors

(A and B) Co-occurring and co-excluding networks for ARG families for a.m. (A) and p.m. (B) subsets, respectively. Node sizes indicate the relative abundance of
the families. Node colors suggest time-specific signature ARG families (blue for a.m. and orange for p.m.). Clinical importance and high dissemination potential
(HGT rate > 100) are illustrated by the label colors (red and purple, respectively). Edge widths and colors represent the SparCC coefficients (Friedman and Alm,
2012) and the directions of correlation.

(C) The contribution and correlation networks of taxa, ARG families, and BGC types for the p.m. subset. Species are presented as dots and grouped by phyla,
whereas ARG families and BGC types are indicated by diamonds and squares. Different stroke colors indicate time-specific signatures. Filling colors suggest
clinical importance (for ARG families, red), dissemination potential (for ARG families, purple), or pathogenic potential (for species, red). Edge width represents the
correlation coefficient or the proportion of a taxonomic contribution to ARG or BGC (5% to 100%), whereas edge colors illustrate the directions of the correlations.

and their contributing species (Figure 6C; Data S7). At the
phylum level, the most abundant phylum, Actinobacteria,
contributed to both ARGs and BGCs. Proteobacteria and Firmi-
cutes contributed more to ARGs but less to BGCs, whereas Bac-
teroidetes showed links only to ARGs. The dominant species,
P. acnes, was not determined to be a major contributor to any
ARG family. S. aureus, E. coli, S. suis, K. oxytoca, S. arlettae,
and Williamsia sp. D3 were the top-ranking species contributing
to the clinically important ARG families. Notably, we could
observe a high abundance of S. aureus in the TC, MOS, and
ER lines. The ER line was the most populated line for S. suis,
K. oxytoca, and S. arlettae, whereas the MOS line showed a
higher abundance of Williamsia spp. The abundance of the top
clinical ARG contributing species was always led by clinically
important ARG-enriched lines (the ER and TC lines). Investi-
gating the line signature ARG families, S. suis was the major
contributor to the ER signature families tetA and tetO. The ER
line was also the most abundant line for S. suis. blal, an ARG fam-
ily with an extremely high HGT rate, had a distinctly higher abun-
dance in the TC and ER lines, and its only contributing species,
S. aureus, was also abundant in the TC (second) and ER (fourth)
lines. For the MOS leading family aph(3’), also with a high
HGT rate, multiple contributors (S. maltophilia, A. baumannii,
and P. aeruginosa) were identified, and the MOS line was vali-
dated to have a high abundance of A. baumannii, followed by
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S. maltophilia. On the other hand, BGC-type contributing organ-
isms were more extensively distributed throughout the whole
community (4,303 taxa contributing to 40 BGC types) in com-
parison with the ARG contributors (only 2,116 taxa linked with
136 ARG families). The greatest BGC contribution was from
M. luteus, followed by P. acnes, Gordonia bronchialis, Kytococ-
cus sedentarius, and Corynebacterium jeikeium. For the 4 ARG-
associated BGC types mentioned above, P. acnes was the
dominant contributor to lantipeptide, whereas bacteriocin was
evenly linked with multiple species from Streptococcus, Kocuria,
Burkholderia, Haemophilus, and other genera, and aryl polyene
and homoserine lactone shared A. baumannii as their leading
contributing species.

DISCUSSION

Previous studies have investigated the microbial composition of
mass transit aerosols within the New York City and Hong Kong
MTR (Leung et al., 2014; Robertson et al., 2013) as well as station
and train surfaces in New York City and Boston (Afshinnekoo
et al., 2015; Hsu et al., 2016). The skin microbial community
should also be appreciated as a pivotal component of such in-
door investigations. The skin microbiota is adapted to the human
body and may influence human health through its capacity to
travel with individuals, shed from the skin, adhere to indoor
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surfaces, and recolonize other individuals (Lax et al., 2014). Our
study focuses on the characterization of skin microbiota ac-
quired when exposed to a public mass transit environment
such as the Hong Kong MTR. Like other studies of train surfaces,
station surfaces, and aerosols (Afshinnekoo et al., 2015; Hsu
etal.,2016; Leung et al., 2014; Robertson et al., 2013), the metro
microbial communities recovered from palm samples in the
Hong Kong MTR were largely derived from human skin commen-
sals regardless of the sampling sites. In addition, shotgun
sequencing provided significantly higher resolution of the taxo-
nomic profiles and identified P. acnes as the dominant species,
which was not identified in early 16S rRNA sequencing-based
studies, leading to a potential bias in the interpretation of micro-
bial communities (Leung et al., 2014; Robertson et al., 2013). By
applying shotgun sequencing, we could delve into the strain-
level analysis, which identified putative pathogenicity, interac-
tions with distinct phage subtypes, and strain-specific variation
and contribution to morning versus afternoon conditions.

Regarding the resistome, the resistance genes against chlor-
amphenicol, tetracycline, and beta-lactamase reported by previ-
ous studies (Afshinnekoo et al., 2015; Hsu et al., 2016) were also
observed in our samples. Our investigation of the skin microbial
community enabled the precise characterization of the antibiotic
resistance, based on the relatively high stability of the microbial
communities (Oh et al., 2016). In comparison with the Boston
metro metagenomic study (Hsu et al., 2016), more resistance
to widely used clinical antibiotics, including vancomycin, eryth-
romycin, and methicillin, could be detected in our samples with
daily recurrence. Besides the clinically important ARGs, this
study also investigated and estimated the ARG dissemination
potential at the family level and community scale. Routine
screening for clinically important ARGs and assessment of their
dissemination potential would allow improved detection of po-
tential health risks induced by antibiotic resistance outbreaks,
geographical transmission, or cross-species migration.

The universal stability of the skin microbiome (Oh et al., 2016)
promotes the reliability and the reproducibility of longitudinal
analyses across the sampling intervals used in our study: short
intervals as in different sampling times in a day and median inter-
vals as in different sampling days in successive weeks. The sam-
pling intervals have successfully assisted with exploring the
effect on community diversity and stability from the intraday tidal
effect as well as the inter-day variation. Intraday sampling time
was identified as the major driver of the variation and recurrence
of microbial composition and diversity in conjunction with the
ARGs and BGCs carried by the community composition. When
evaluating the inter-day stability, the less abundant environ-
mental species (not human-hosted organisms) showed signifi-
cantly higher instability, further suggesting their potential
competitive disadvantages under the pressure of human traffic
and the influence of non-human factors, such as indoor climate
(Brodie et al., 2007; Kelley and Gilbert, 2013). Taxonomic con-
tributors to the ARG families were also captured for the time-
and line-specific signature ARGs, with strong co-occurring
trends, serving as evidence of the presence of signature ARGs
and their transmission events (Hiramatsu et al., 2014; Lowy,
20083). Tracing ARG-contributing species could serve as a start-
ing point for strategies that might inhibit ARG transmission and
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dissemination in the future. Furthermore, in our analyses, we
considered the taxonomy, resistome, and BGC profiles as inter-
related components. Taxonomic contributors and associated
BGC types were regarded as direct and implied evidence for
the divergence observed in the resistome (Donia et al., 2014).
When exploring the resistome, clinically important ARG
families display higher variances, suggesting greater influence
from human traffic. Notably, most p.m. signature ARG families
are closely affiliated with clinical use of antibiotics. The speci-
ficity of line-specific signatures decreased from a.m. to p.m., in
accordance with a previous evaluation of the stability of site-spe-
cific signatures of skin microbes (Oh et al., 2016). By reviewing
the time- and line-specific ARG analyses in conjunction, we
captured some evidence for intra- and intercity ARG transmis-
sion. As a notable case, we captured 4 tetracycline- and 2 van-
comycin-resistant ARG families as universal p.m. signature fam-
ilies: tetMWOS, tetRRPP, tetM, tetA-B, vanB, and vanD. All of
these families were identical or highly associated with the ER
line signature families. The ER line showed a markedly higher
abundance in these families a.m., and then these families gained
in abundance in all lines and became universal p.m. signature
families, whereas the ER line lost specificity in these families (Fig-
ure 3A). From these findings, one may hypothesize that the ER
line, the only cross-border line linked to mainland China, may
serve as a potential source of clinically important ARGs, espe-
cially against tetracycline, which is a commonly used antibiotic
in China’s swine feedlots (Wu et al., 2010) and can be detected
in the soil in the Pearl River Delta area (Li et al., 2011), where
the cities of Hong Kong and Shenzhen are located. It appears
that these ARGs disperse into different lines in the MTR system
with the carriage of human traffic and finally become relatively
abundant in every line in the later hours of the day.
Furthermore, from our study, robust patterns in microbial
community dynamics and clinically relevant ARG transmission
were observed. To evaluate the potential real health effect of
such transmission events, the population size of the microbial
community becomes a key factor. In our preliminary study, we
also collected samples by swabbing the train surfaces, following
the same procedure as used in the Boston study (Hsu et al.,
2016). Our DNA amounts from both palm and surface samples
(<1ng/ L)were orders of magnitude lower than those in the orig-
inal study (40~220 ng/ L) (Hsu et al., 2016), which suggests a
relatively lower overall biomass of the MTR microbiome and rela-
tively higher safety when using the MTR, as the transmission of
pathogens and ARGs is kept at a low level. The low DNA recov-
ered may be attributed to the effectiveness of the antibacterial
nano-silver-titanium dioxide coating (NSTDC) applied in the
MTR (MTR Corporation, 2006). Assuming that no such antibac-
terial practice was applied, the robust patterns of the clinically
relevant ARG transmission could be amplified, resulting in
increased health effects. We propose that public policy makers
should continue to pursue and evaluate evidence of the effect
of antimicrobial strategies applied to public transit systems
and checkpoints (e.g., border control regions, airports and
aircraft, cross-border trains and buses, etc.), especially between
regions with different norms and regulations in industrial and
clinical antibiotic usage. In addition to maintaining and expand-
ing the silver nanoparticle coating prophylaxis, public restroom
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sanitation could be improved, and hand sanitizer dispensers
could be provided at the exits of metro, train train, and bike-
sharing stations, airports, and hospitals to reduce the transmis-
sion of pathogens and clinically relevant ARGs. At a higher level,
the growing understanding of the contribution of microbial com-
munities to human health should be reflected in design of built
environments and materials and equipment for public use with
attention to the microbiome. Studies have found that architec-
ture and ventilation design affect community diversity (Kembel
et al., 2014). Furthermore, given the effect of substrate on com-
munity composition, future work on the dynamics of optimizing
spaces and surfaces for human health in relation to microbiota
is needed.

In summary, our investigation of the microbiome associated
with public transit reveal that communities are decidedly shaped
by human interactions and traffic flows, and we hope to have es-
tablished a baseline for further studies by incorporating multidi-
mensional influences from the host, time, environment, geogra-
phy, and varied civic characteristics. In future studies, more
sampling time points could be considered to delineate more
exquisite intraday dynamics, especially the time points before
and after morning and evening peaks, respectively. A dynamic
and surveillance of the microbial communities responsive
to and shaped by the public transit systems could serve as a
reference for public policy-making regarding the prevention of
ARG spread via intercity and cross-border traffic and protect mil-
lions of citizens from potential health hazards in daily life.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

48 palm microbiome samples This study https://www.ncbi.nlm.nih.gov/biosample/

SAMNO7714726 to SAMNO7714761

Critical Commercial Assays

PowerSoil DNA Isolation kit MO BIO Laboratories 12888-100

Nextera XT DNA Library Preparation Kit lllumina FC-131-1096

ESwab Collection & Transport System BD company 220246

Deposited Data

Sequencing data This study Sequence Read Archive (SRA): No. SRP119528

The eukaryotic tree of life
PATRIC database

Lists of potential pathogens
CARD database

ResFams database

Clinically important ARGs
VFDB database

HGTree database

NCBI plasmid RefSeq database

Sequencing data of other
environmental samples

Lang et al., 2013; Segata et al., 2013
Wattam et al., 2014

Forsberg et al., 2014; Kembel et al., 2012
McArthur et al., 2013

Gibson et al., 2015

Munck et al., 2015

Chen et al., 2016

Jeong et al., 2016

Pruitt et al., 2014

NCBI Sequence Read Archive

under project RUINA413474

N/A

https://patricbrc.org/

N/A

https://card.mcmaster.ca/
www.dantaslab.org/resfams/

N/A

www.mgc.ac.cn/VFs/
https://omictools.com/hgtree-tool
https://www.ncbi.nlm.nih.gov/refseq/

ERP013563, ERP013562, ERP012177,
SRP033730, SRP061803

Software and Algorithms

DIAMOND

MEGANS5

OpenTree7.0

blast

R3.2

VEGAN

phyloseq

RANGER-DTL 2.0

antiSMASH 3.0

Cytoscape 3.3.0

Spatial Design Network Analysis (SDNA)
SparCC algorithm

IndVal test

iTOL

Bayesian SourceTracker

PanPhlan

Strain-level taxonomic profiling tool

Buchfink et al., 2015

Huson et al., 2011

Hinchliff et al., 2015

Altschul et al., 1990
http://www.r-project.org
Dixon, 2003

McMurdie and Holmes, 2013
Bansal et al., 2012

Weber et al., 2015

Shannon et al., 2003
Cooper and Alain, 2015
Friedman and Alm, 2012
Dufrene and Legendre, 1997
Letunic and Bork, 2016
Knights et al., 2011

Scholz et al., 2016

Ohetal., 2014

https://ab.inf.uni-tuebingen.de/software/
diamond

https://ab.inf.uni-tuebingen.de/
software/megan5/

https://tree.opentreeoflife.org/opentree/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.r-project.org

N/A

https://joey711.github.io/phyloseq/
http://compbio.mit.edu/ranger-dtl/
https://antismash.secondarymetabolites.org/
http://www.cytoscape.org/
https://www.cardiff.ac.uk/sdna/

N/A

N/A

https://itol.embl.de/

N/A
http://segatalab.cibio.unitn.it/tools/panphlan/
https://github.com/ohlab/skinmetagenome

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for data and resources and should be directed to and will be fulfilled by the Lead Contact, Gianni
Panagiotou (gianni.panagiotou@hki-jena.de).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection

Each sample was a pooled community from the palms of 6 healthy individuals (without symptoms of skin disease or other iliness) who
maintained contact with different handrails in the Hong Kong MTR system for 30 minutes (Figures 1A and 1B). For each of the 8 urban
lines in the Hong Kong MTR system, samples were collected in the morning (9:00 to 11:30 am) and evening (19:00 to 21:30 pm). Each
line was sampled 3 times within 3 consecutive weeks. For each sample, we collected metadata recording the line, sampling date and
time, sampling route interval and weather condition of the sampling day (Table S1).

In each sampling section, volunteers followed a standard procedure: 1. Wash hands using normal soap and distilled water for 90 s
before boarding the train; 2. Touch different handrail surfaces in a running train of a specific line for approximately 30 minutes; 3.
Swab each palm for 2 minutes using the ESwab Collection & Transport System (BD company, pre-moisturized with 0.15M NaCl
and 0.1% Tween 20). To provide adequate DNA yield for library preparation of each sample, one swab was used for all 12 palms.
Swabs were stored in 15 mL LabServ tubes on ice and transported to —20°C freezer within an hour. DNA extractions were performed
within 24 hours after sample collection.

An extra 6 negative controls were prepared (3 from the same palms without touching any surface for 30 minutes, 3 from unused
swabs). The DNA yields were undetectable by Qubit (< 0.007 ng/ 1in50 L elution buffer) for all negative controls, suggesting that the
DNA that we collected originated from the MTR train surfaces but not from the swabs, buffer solutions or remaining bacteria on palms
after washing.

Ethics approval

All participants in the sampling procedure were researchers from the University of Hong Kong, and gave written informed consent.
Sequencing reads from human genome were removed before analyses. The study was approved by the Human Research Ethics
Committee (HREC) of the University of Hong Kong.

METHOD DETAILS

DNA extraction and metagenomic sequencing

Microbial DNA was extracted with the PowerSoil DNA Isolation kit (MO BIO Laboratories) following the official protocol. 0.95 +
0.41 ng DNA was obtained for each sample. The extracted DNA was used to construct shotgun metagenomic libraries using the Nex-
tera XT kit following the standard protocol, which is optimized for the library construction for low DNA input (1 ng). The metagenome
sequencing was performed with lllumina HiSeq 1500 (101bp PE) at the Centre for Genomic Sciences of The University of Hong Kong.
The sequenced reads were processed for quality control to remove the adaptor regions, low quality reads and the reads from human
genome following the previously described steps (bwa mapping against GRCh37/hg19 reference genome using mem algorithm, ex-
tracting reads with > 95% identity) (Li et al., 2016). 75% to 94% of the reads passed the quality control, with a mean value of 90.4%.
The human reads occupied 39% to 78% of the clean reads, with a mean value of 43.8%.

The total DNA amount obtained (0.95 + 0.41 ng) was much lower than in other studies which collected samples by swabbing sur-
faces in metro stations directly (Afshinnekoo et al., 2015; Hsu et al., 2016), but comparable to previous human skin metagenomic
projects (Oh et al., 2014). Besides the disparity in the microbial density between the handrail and the colonized palm, another possible
explanation for the low DNA collected could be the effect of the antibacterial Nano-Silver-Titanium Dioxide Coating (NSTDC) applied
to MTR surfaces (MTR Corporation, 2006). The DNA library construction was optimized for the low DNA input and shotgun metage-
nomic sequencing was performed for all samples. We used our previously developed method to perform functional metagenomics
analysis after the metagenomics sequencing (Forsberg et al., 2012; Munck et al., 2015; Sommer et al., 2009; van der Helm et al.,
2017), however, the DNA amount of these samples were lower than the minimal requirements for the construction of functional
libraries.

Taxonomic profiling

From the metagenomic sequencing data, a million reads were randomly sub-sampled from each sample for taxonomic profiling.
These reads were mapped to the NCBI non-redundant (nr) database by DIAMOND (Buchfink et al., 2015) using the default settings.
To estimate the taxonomic composition of the samples, the Lowest Common Ancestor (LCA) algorithm was implemented with LCA
mapper from mtools, MEGANS5 (Huson et al., 2011) (-f Detect -ms 50 -me 0.01 -tp 50). The relative abundance for each taxonomic
level was distille following the previously described pipeline (Heshiki et al., 2017; Huson et al., 2011). The 744 most abundant species
(composing 95% of the total reads in all samples) were used in further statistical analyses (Data S1B).

Phylogeny
Synthetic tree of phylogeny and taxonomy for the most abundant bacterial species (composing 90% of the total reads) was acquired

from OpenTree7.0 (Hinchliff et al., 2015), integrating the major studies on the phylogenetic trees for bacteria (Lang et al., 2013; Segata
et al., 2013).
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Reference-based strain mapping
Strain profiling of P. acnes and S. epidermidis was conducted according to the previously suggested reference-based approach
(Oh et al., 2014). The non-core region strain quantifications were used in statistical comparisons (Data S1C and S1D).

Pan-genome analysis
Pan-genome profiling was conducted by PanPhlan using default parameters for the 10 most abundant species and 10 most ARG
contributing species (Scholz et al., 2016). Presence/absence and abundance profiles were generated for gene clusters.

Species categorization

The bacterial species were queried against PATRIC database (Wattam et al., 2014) for categorization. The features recorded in
genome metadata include: habitat, host, mobility, salinity, altitude/depth, temperature range, oxygen requirement, pathogenicity
and antimicrobial resistance. To link the PATRIC features with the taxonomic profiling at the species level, all features in any strain
were aggregated and assigned to the corresponding species (Data S3A). For example, 6 strains of Vibrio ordalii were marked as
aquatic strains in PATRIC, so the abundance of V. ordalii at the species level was counted for the category of aquatic species.

Identification of pathogens and potential pathogenic species

To identify opportunistic pathogens, two lists of potential pathogens (Forsberg et al., 2014; Kembel et al., 2012) were combined (Data
S2A). The PATRIC database (Wattam et al., 2014) was used as a reference for taxonomic structures and species/strain names. The
organisms appearing on the list were marked as opportunistic pathogens, and the species containing at least one opportunistic path-
ogenic strain were treated as potential opportunistic pathogenic species (Data S2B).

Identification and quantification of ARG mechanism and families

Toidentify ARGs and assign them to different mechanisms and ARG families, two different procedures were performed. For the ARG
mechanism annotation, the one million reads subset used for taxonomic profiling were mapped against CARD database (McArthur
etal., 2013) (Data S3B), as described previously (Heshiki et al., 2017). For the ARG family information, all reads were mapped against
the extended ResFams database (Gibson et al., 2015). The 27 sequences of clinically important ARGs described previously (Munck
et al., 2015) were also included in the extended database, if the sequenced were absent in ResFams (blastp identity < 95%). New
clinically important ARG families were built for the absent ARGs in ResFams: all existing ResFams sequences were mapped against
those ARGs, and the mappable genes (blastp, -e 1e-5-id 95) were classified into regarding clinically important ARG families. ARG
families may have overlaps due to the family ranges defined by ResFams. In both annotation procedures, reads were mapped using
DIAMOND blastp with stringent parameters (-e 1e-10-id 95, best hits reserved). The mappable reads were further mapped against
the nr database using DIAMOND blastp. If ARGs did not remain the best hits (sorted by e value) in the nr database mapping step, the
reads were removed from the ARG mapping results. The coverage rate of each ARG was calculated by using the mappable reads
from all samples. Among 136 quantified ARG families, 98 families have a coverage > 50%, 91 families > 70% and 84 families > 90%.
The abundances of ARG families were calculated as RPKM (Reads per Kilobase per Million mapped reads) (Data S3C). The overall
abundances of all ARG families were calculated as RPM (Reads per Million mapped reads) (Data S4B).

Identification of virulence factors
All sequencing reads were mapped against VFDB (Chen et al., 2016), following the same procedure and parameter of ARG family
annotation. The abundances of the virulence factors of the opportunistic pathogens were summarized in RPKM (Data S2C).

Community diversity and dissimilarity
To estimate the alpha-diversity of the microbial community for each sample, the Simpson diversity index was calculated with VEGAN
(Dixon, 2003) based on the species-level relative abundance (Table S1).

To estimate the community dissimilarities, weighted UniFrac distances were calculated by phyloseq (McMurdie and Holmes, 2013)
based on the relative abundance of species, as well as functional classes (for example, ARG family profiles). Ordinations were calcu-
lated by nonmetric multidimensional scaling (NMDS) for the illustration.

Dissemination potential estimation

To estimate the plasmid-mediated horizontal gene transfer (HGT) rate, all ARG sequences were mapped against the NCBI plasmid
RefSeq database (Pruitt et al., 2014) using blastp (-e 1e-5-id 95). The protein sequences from all functional ARGs were mapped to the
gene families that were acquired from the HGTree database (Jeong et al., 2016). The HGTree gene family of an ARG was defined by
the gene family with the highest proportion of valid hits (-e 1e-5 and coverage > 50% in query or subject) in HGTree families.
RANGER-DTL (Bansal et al., 2012) was used for phylogenetic reconciliation analysis based on the gene tree and species tree pro-
vided by the HGTtree. The HGT rate in each family was calculated by dividing the number of HGT events by the total phylogenetic tree
length of that family. Finally, the HGT rates were assigned to ResFams ARG families with unique mapping (Data S4A). The ARG fam-
ilies with extremely high HGT rate (> 100) are blal and aph(3’).
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The community-wide dissemination potential (Data S4B) was estimated for each sample, by as the following equation:
> HGT+RPKM; (Equation 1)
where:

i is an HGTree gene family;
HGT; is the HGT rate of the family i;
RPKM,; is the abundance of the HGTree family i in RPKM.

Identification and quantification of biosynthesis gene clusters

BGCs annotation was based on antiSMASH 3.0 (Weber et al., 2015) and modified as previously described (Donia et al., 2014; Nietal.,
2016). All reads were mapped against the database using DIAMOND with the same parameters as ARGs. The abundances of BGCs/
BGC types were calculated as RPKM (Data S3D).

Identification of taxonomic links for ARGs and BGCs

For all the reads that could be mapped to ARGs/BGCs, taxonomic profiling was carried out using the same pipeline used for the 1
million read subsamples, with more stringent filtering criteria (bootstrap value > 50 in LCA mapping at species level). Therefore, the
major contributing species for each ARG family or BGC type could be identified (Dataset S7).

Morphometric modeling of hybrid rail-road urban network

To test the hypothesized correlations between microbial transmission, loads and diversity and underlying urban morphology and
connectivity, a series of network models were conducted. As a first step, initial assessment of network topology of the 8 urban lines
was conducted by Cytoscape 3.3.0 (Shannon et al., 2003). Averaged edge features (EdgeBetweenness) and node features (including
BetweennessCentrality, ClosenessCentrality, Degree, NeighborhoodConnectivity, NumberOfEdges, Radially) were calculated for
each line (Data S5A). Line civic features (number of stations/interchange stations, number of interchangeable lines, and average sta-
tion distance to Shenzhen) were also incorporated in the topology analysis.

The second step involved more detailed network modeling employing spatial Design Network Analysis (sDNA) (Cooper and Alain,
2015), a state-of-the-art urban network analysis technique developed by teams at Cardiff University and The University of Hong Kong
to model multiple scale urban morphological metrics (morphometrics). The MTR network database was first coupled with the street
network database by digitizing the network of subways linking platforms to station entry-exit points to adjacent street link in ArcGIS
13 and the hybrid network was cleaned, transcribed into an access graph model and subjected to sDNA analysis. Among a suite of
various network morphological metrics (morphometrics) generated, betweenness centrality or through-movement potential was em-
ployed in the present study. It is the simulated counts of movement through each link in the network, given its position in the network
and the geometrical and topological connectivity with other links within the network. sDNA betweenness of x in a graph of N links may
be defined as:

Bt Wi(x)=> "> "L(y)L(2)P(2)OD(y z X) (Equation 2)

yNzRy

where:

y and z are the geodesic end points;

Ry is the set of links within a defined radius from y;
L(y) and L(z) are length of links y and z respectively;
P is the proportion of link z within the defined radius.

OD is a function defined as:

1 if x is on the geodesics from y to z
ifx=y#z
OD= if x=z#y (Equation 3)

ifx=z=y

N = N = N =

o

otherwise

It was modeled at micro-meso-macro-level urban scales (100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 5000, 7500,
10000, 15000 m street catchments) to capture potential effects of scale on human mobility and microbial transmission (Data S5B).
For each MTR station, betweenness values were aggregated at three levels: with respect to all the street links closest to all exits of a

e4 Cell Reports 24, 1190-1202.e1-e5, July 31, 2018

https://reader.clsevier.com/reader/sd/8816AC0012C1EDBBOCA9E9E4764C20D469... 08-08-2018



The Environmental Exposures and Inner- and Intercity Traffic Flows of the Metro S... Page 19 of 19

OPEN

ACCESS
CellPress

metro station, all street links within a 50 m and 100 m catchment radii. For each MTR line, the street connectivity index was repre-
sented by the mean betweenness for all the links for the line as well as sSDNA betweenness values of all stations on it. Other urban
measures employed in the study included network proximity to two transportation hubs, namely Hong Kong Central station and
Shenzhen Railway Station and Luohu metro link.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

All statistical analyses were performed in R. For comparative analysis between AM and PM samples (including taxa, species cate-
gories, ARG families, BGC types, etc.), paired t tests (for abundance/proportion) or Wilcoxon signed-rank tests (for rankings) were
performed. For comparative analysis among different lines or different sampling days, ANOVA (for abundance) or Kruskal-Wallis tests
(for rankings) were performed. For line-specific species categories, Wilcoxon tests with one-against-all comparison were performed.
To discover line-specific signatures for ARG families and BGC types, IndVal tests (Dufrene and Legendre, 1997) were performed.
Alpha value of 0.05 was used for all statistical tests.

Co-occurring and co-excluding relationships among taxa, ARG families and BGC types were identified by SparCC algorithm
(Friedman and Alm, 2012). Correlations with coefficient absolute value greater than 0.3 were reserved (Data S6).

Pearson’s correlation coefficients were calculated between topological or geographical features and biological features (overall
ARG abundance, clinically important ARG family abundance, community-wide dissemination potential, ER line signature ARG fam-
ilies’ abundance, etc.). Correlations with p value < 0.05, or adjusted q value < 0.1 with Bonferroni correction for multiple comparisons,
were marked as significant correlations.

Data visualization

R, python and corresponding packages including ggplot2, gplots, heatmap.plus and matplotlib were used for illustration of statistical
results. iTOL (Letunic and Bork, 2016) was used for the phylogeny visualization. Cytoscape 3.3.0 (Shannon et al., 2003) was used to
visualize the analyses incorporating network and topology.

DATA AND SOFTWARE AVAILABILITY

Data from the other studies

The sequencing data of other environmental samples used from comparison were obtained from NCBI Sequence Read Archive
(accession number: ERP013563, ERP013562, ERP012177, SRP033730 and SRP061803).

Availability of data and materials

The sequencing reads files were deposited into the Sequence Read Archive (SRA) of the National Center for Biotechnology Informa-

tion (NCBI) with accession number SRP119528 under project PRUNA413474. The datasets supporting the conclusions of this study
are included within the article and the additional files.
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