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SUMMARY

Chronic Pseudomonas aeruginosa infections evade
antibiotic therapy and are associated with mortality
in cystic fibrosis (CF) patients. We find that in vitro
resistance evolution of P. aeruginosa toward clini-
cally relevant antibiotics leads to phenotypic conver-
gence toward distinct states. These states are
associated with collateral sensitivity toward several
antibiotic classes and encoded by mutations in anti-
biotic resistance genes, including transcriptional
regulator nfxB. Longitudinal analysis of isolates
from CF patients reveals similar and defined pheno-
typic states, which are associated with extinction of
specific sub-lineages in patients. In-depth investiga-
tion of chronic P. aeruginosa populations in a CF
patient during antibiotic therapy revealed dramatic
genotypic and phenotypic convergence. Notably,
fluoroquinolone-resistant subpopulations harboring
nfxBmutations were eradicated by antibiotic therapy
as predicted by our in vitro data. This study supports
the hypothesis that antibiotic treatment of chronic in-
fections can be optimized by targeting phenotypic
states associated with specific mutations to improve
treatment success in chronic infections.
INTRODUCTION

The emergence of drug-resistant bacteria coupled with a lack

of novel structural classes of antibiotics have made antibiotic

resistance one of the most eminent threats to global health

(May, 2014; O’Neill, 2016). Therapeutic options and strategies

areespecially scarce forGram-negativepathogenssuchasPseu-

domonas aeruginosa (Boucher et al., 2013; Cabot et al., 2012).

This versatile, opportunistic pathogen is a frequent causeof acute

nosocomial infections aswell as chronic infections in high-riskpa-

tient groups, such as those suffering from cystic fibrosis (CF) (Me-

saros et al., 2007). CF is a recessive lethal genetic disorder among
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the Caucasian population that is caused by mutations in the

CF transmembrane conductance regulator (CFTR) gene (Elborn

et al., 2016). While intensive antibiotic treatment for the eradica-

tion of P. aeruginosa infections has been successful in young pa-

tients, eradicationultimately fails, leading to the chronic infections

experienced by most adult CF patients (Folkesson et al., 2012;

Gibson et al., 2003; Johansen et al., 2004). During chronic infec-

tion, antibiotic treatments can temporarily reduce airway infection

and inflammation, thus extending the periods of stable disease

statusandmaintained lung function (Fodor et al., 2012).Neverthe-

less, the ability of P. aeruginosa to sustain chronic infection and

resist antibiotic treatment is associated with decline in lung func-

tion, respiratory failure, and death in CF patients (Hauser et al.,

2011; Pittman et al., 2011; Taylor-Robinson et al., 2012).

The antibiotic resistance of P. aeruginosa is driven by several

factors in CF patients, including the activation of chromosomally

encoded resistance mechanisms, such as decreased production

of the outer membrane porin, inducible chromosomal b-lacta-

mase AmpC, and overexpression of several efflux systems (Lister

et al., 2009;Marviget al., 2015a). Themaineffluxpumpsare tripar-

tite systems consisting of a resistance nodulation cell division

(RND) transporter, amembrane fusionprotein (MFP), andanouter

membrane factor (OMF). MexAB-OprM, MexCD-OprJ, MexEF-

OprN, and MexXY-OprM are the main efflux pumps that expel

functionally and structurally dissimilar antibiotics (Li et al., 2015).

When Escherichia coli and Staphylococcus aureus evolve

resistance toward specific antibiotics, they also develop sensi-

tivity toward other antibiotics (Baym et al., 2016; Imamovic and

Sommer, 2013; Lázár et al., 2013; Munck et al., 2014; Rodriguez

de Evgrafov et al., 2015). This observation led to the proposal of a

new, rational drug treatment paradigm termed collateral sensi-

tivity cycling, in which sequential drug treatments are designed

to exploit collateral sensitivity resulting from resistance evolution

(Imamovic and Sommer, 2013). Collateral sensitivity has also

been demonstrated in cancer cell lines (Hall et al., 2009) and

was recently successfully deployed for treatment of Ph(+) acute

lymphoblastic leukemia in an animal model (Zhao et al., 2016).

Collateral sensitivity may be particularly useful for optimizing

treatments of chronic infections since their nature and severity

warrants and requires tailored treatment strategies. Chronic

lung infections of CF patients caused by P. aeruginosa may be
uary 11, 2018 ª 2017 The Author(s). Published by Elsevier Inc. 121
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Table 1. List of Antibiotics Used in the Study

Antibiotic

Antibiotic

Abbreviation Class (sub-class)

Class

Abbreviation Target

EUCAST

Breakpoints

Amikacin AMI aminoglycoside A protein synthesis, 30S 16

Gentamicin GEN aminoglycoside A protein synthesis, 30S 4

Tobramycin TOB aminoglycoside A protein synthesis, 30S 4

Ciprofloxacin CIP quinolone Q DNA gyrase 1

Levofloxacin LEV quinolone Q DNA gyrase 2

Ampicillin AMP b-lactam (penicillin) B cell wall n.a.

Piperacillin PIP b-lactam (penicillin) B cell wall 16

Carbenicillin CAR b-lactam (penicillin) B cell wall n.a.

Ticarcillin TIC b-lactam (penicillin) B cell wall 16

Aztreonam AZE b-lactam (monobactam) B cell wall 16

Cefepime CFP b-lactam (cephalosporin) B cell wall 8

Cefuroxime CFX b-lactam (cephalosporin) B cell wall n.a.

Ceftazidime CFZ b-lactam (cephalosporin) B cell wall 8

Meropenem MER b-lactam (carbapenem) B cell wall 8

Imipenem IMI b-lactam (carbapenem) B cell wall 8

Minocycline MIN tetracycline T protein synthesis, 30S n.a.

Doxycycline DOX tetracycline T protein synthesis, 30S n.a.

Azithromycin AZY macrolide M protein synthesis, 50S n.a.

Erythromycin ERI macrolide M protein synthesis, 50S n.a.

Clarithromycin CLA macrolide M protein synthesis, 50S n.a.

Colistin COL polymyxin P lipopolysaccharide 4

Fosfomycin FOS fosfomycin F cell wall biogenesis n.a.

Rifampicin RIF rifamycin R RNA synthesis n.a.

Trimethoprim/

Sulfamethoxazole

TMS antifolate C combination folic acid

pathway/ synthesis of

dihydrofolic acid

n.a.

n.a., no EUCAST breakpoints listed (EUCAST, 2016).
a useful clinical model to study the evolution of collateral sensi-

tivity in response to antibiotic therapy. While a recent study re-

ported a lack of collateral sensitivity in clinical isolates from CF

patients (Jansen et al., 2016), the study did not investigate rela-

tive changes in strain susceptibility, and, thus, collateral sensi-

tivity might be missed due to the lack of appropriate baseline

controls. Moreover, if evolutionary tradeoffs, such as collateral

sensitivity, do not occur in vivo, then ever-increasing resistance

would be the consequence of decades of antibiotic exposure.

Yet, previous phenotypic characterization of CF isolates did

not observe such monotonic increase in antibiotic resistance

over time (López-Causapé et al., 2013). Accordingly, we hypoth-

esized that P. aeruginosa might evolve collateral sensitivity in

response to antibiotic exposure both in vitro and in patients

and that these vulnerabilities modulate population dynamics

during antibiotic treatment.

RESULTS

Complex Networks of Collateral Sensitivity and
Collateral Resistance
To elucidate the collateral sensitivity network of drug-resistant

strains of P. aeruginosa, PAO1 were experimentally evolved in
122 Cell 172, 121–134, January 11, 2018
media that resembled the chemical composition encoun-

tered in the lungs of CF patients (SCFM) (Palmer et al.,

2007). Twenty-four clinically relevant antibiotics that included

anti-pseudomonal antibiotics and other drugs were chosen

from eight chemical classes affecting different targets in

P. aeruginosa (Table 1). To exclude possible effects on resis-

tance phenotypes from adaptation to novel growth conditions,

we adapted the ancestral PA01 strain to SCFM for 10 days as

a media control (WTE). At the last day of the adaptive evolution

experiment, all lineages could grow in the media with anti-

biotic concentrations exceeding the clinical breakpoint defined

by EUCAST for P. aeruginosa (Table 1; Figures S1A–S1F)

(EUCAST, 2016). Collateral sensitivity or collateral resistance

was defined as a decrease or increase in the MIC (minimal

inhibitory concentration) of the antibiotic-resistant strain rela-

tive to the wild-type adapted to SCFM (WTE) (Figures S1G–

S1I) (Imamovic and Sommer, 2013). To confirm the robustness

of our susceptibility tests, we measured the significance of

the fold increase or decrease in resistance relative to the

WTE (see STAR Methods). We observed that collateral sensi-

tivity toward ampicillin decreased by 8.5-fold for ciprofloxa-

cin-resistant strain (p value 3.42e�21, t test). Increase in sus-

ceptibility for other antibiotics such as amikacin and colistin
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Figure 1. Consequence of Drug Resistance

Evolution: Collateral Sensitivity and Collat-

eral Resistance

(A) Heatmap represents quantification the collat-

eral sensitivity profiles of the 24 evolved antibiotic-

resistant PAO1 strains. Color coding represents

the fold increase (red) or decrease (blue) in MIC

value relative to the PAO1 strain evolved in SCFM

media without antibiotics (WTE). For each strain,

five replicates dose-response curves were per-

formed to determine the drug susceptibility

(Table S1). The order of the drugs and resistant

strains was determined by hierarchical clustering

using the similarity of normalizedMIC values as the

distance measure.

(B) Sub-network of collateral interactions among

drugs commonly administered in treatments of

CF patients. For collateral susceptibility networks,

the directed path of each arrow represents the

collateral sensitivity (blue) or collateral resistance

(red) of an affected variable (drug-resistant strain)

on the causal variable (drug). Collateral sensitivity

cycling for two drugs would consist of alternating

application of two drugs with collateral sensitivity

(e.g., colistin and aztreonam) (full network for

collateral sensitivity and resistance interaction

depicted in Figures S2A and S2B).

(C) Number of possible collateral sensitivity cycles

with anti-pseudomonal drugs (EUCAST) versus all

drugs used in the study (Table S2).

See also Figures S1 and S2.
was 2.5- and 1.5-fold relative to the WTE; yet, in both cases,

we observed that collateral sensitivity observed was statisti-

cally significant (p value 7.87e�55 and 2.07e�290, t test, respec-

tively) (Figure S1J).

Given that the majority of resistant strains (75%) were collater-

ally sensitive to at least one antibiotic (Figure 1A; Table S1),

we were able to construct a collateral sensitivity network for

P. aeruginosa (Figures 1B and S2A). We simulated the number

of collateral sensitivity cycles comprising: (1) all antibiotics

in the study and (2) anti-pseudomonal antibiotics that have

EUCAST-defined resistance breakpoints for P. aeruginosa

(Table 1). For EUCAST-defined anti-pseudomonal antibiotics,

we detected five collateral sensitivity cycles including two and

three drugs (Figure 1C; Table S2). However, expanding the simu-

lation for collateral sensitivity cycles to all antibiotics tested, the

majority of antibiotics exhibiting collateral sensitivity (78%) could

be employed in collateral sensitivity cycling. The number of simu-
lated collateral sensitivity cycles including

two and three drugs reached 18 and 51

cycles, respectively (Figures 1CandS2B).

Exploring the effects of exposure of

drugs beyond typical anti-pseudomonal

range is relevant for designing treat-

ment strategies since the CF airways are

frequently infected by complex micro-

biota, including potentially pathogenic

bacteria such as Staphylococcus aureus,

Haemophilus influenza, Burkholderia ce-
pacia, or Stenotrophomonas maltophilia (Parkins and Floto,

2015; Willner et al., 2012). These bacteria may be treated with

drugs toward which P. aeruginosa is considered intrinsically

resistant or not used in treatment due to quick resistance devel-

opment. Intriguingly, we observed changes in collateral suscep-

tibility profiles for P. aeruginosa strains exposed to such drugs

(Figure 1A), including trimethoprim-sulfamethoxazole (TMS)

(Table 1), which was used in some centers for the treatment of

S. aureus infections in CF patients (Gibson et al., 2003). The

TMS-exposed PAO1 strain became collaterally sensitive toward

aminoglycosides, polymyxin, and several b-lactam antibiotics.

Simultaneously, the TMS-exposed PAO1 strain conferred resis-

tance toward quinolone and tetracycline drugs (Figure 1A). These

results suggest that, following treatment of S. aureus using TMS,

P. aeruginosa treatment with aminoglycosides would be more

effective than quinolones. This finding supports the hypothesis

that the patient’s treatment history should be considered in order
Cell 172, 121–134, January 11, 2018 123



to exploit specific vulnerabilities of P. aeruginosa that result even

from management of other pathogens.

Evolution of Drug Resistance Leads to Phenotypic
Convergence toward Collateral States
To systematically elucidate the similarity of susceptibility pheno-

types between the evolved strains, we computed Spearman cor-

relation coefficients (r) for each pairwise comparison of their

normalized susceptibility profiles (see STAR Methods). We de-

tected 107 significant correlations (p < 0.05, a two-tailed signif-

icance test) between resistant strains. Interestingly, 67 (60%)

pairwise comparisons had high positive correlation coefficients

for strains resistant to drugs from different chemical classes

suggesting convergent phenotypes (Figure S3A; Table S3).

Among those strains were tetracycline- and macrolide- and qui-

nolone-resistant strains. In contrast, 40 pairwise comparisons

had a negative correlation between their susceptibility profiles

(p < 0.05) suggesting orthogonal phenotypic states. Notably,

negative correlations of susceptibility profiles were observed

in 90% of cases between polymyxin- and b-lactam-resistant

strains (Figure S3A). For instance, colistin- and ceftazidime-

resistant strains had strong negatively correlated susceptibility

(r = �0.74; p < 0.0001) (Figure S3A; Table S3). Interestingly,

several strains resistant to b-lactams (aztreonam, carbenicillin,

and ampicillin) also displayed reciprocal collateral sensitivity

with colistin (Figure 1A).

To further examine the phenotypic states of the resistant

strains, we reduced the dimensionality of the data using principal

component analysis (PCA). This analysis revealed that resistant

strains are divided into four groups that are positioned in different

regions of PCA (Figure 2A), highlighting the convergence toward

specific phenotypic states in response to antibiotic exposure.

b-lactams, aminoglycoside, quinolone, andpolymyxin antibiotics

are commonly applied for the treatment of lung infections in CF

patients. Notably, strains resistant to these antibiotic classes

were positioned in different regions of PCA indicating that under-

standing the convergence toward drug-specific phenotypes for

these drugs could inform treatment strategies. Interestingly, re-

gion II in the PCA plot included strains resistant to quinolones,

macrolides, and tetracyclines (Figure 2A), highlighting that

these different drug classes select for similar phenotypic states

with strongly correlated susceptibility profiles (r = 0.84 – 0.97,

p < 0.0001, Spearman correlation) (Figure S3A; Table S3).

Adaptive Evolution of Clinical Isolates Leads to
Collateral Sensitivity
To explore further the phenotypic convergence in response to

antibiotic exposure, we investigated whether antibiotic resis-

tance evolution from different genetic starting points would

lead to convergent evolution of their susceptibility profiles. We

selected five clinical CF isolates from the DK2 clone type that

share a common ancestor but have diverged during years

of isolation in three different hosts (Marvig et al., 2013). We

observed changes in susceptibility for all adapted clinical iso-

lates, indicating that evolutionary trajectories toward collateral

sensitivity can occur in divergent lineages (with diverse pheno-

typic and genotypic starting point) (Figure S3B). Importantly,

several collateral sensitivity interactions remained preserved in
124 Cell 172, 121–134, January 11, 2018
the majority of strains tested (Figure S3C). For instance, resis-

tance development for ciprofloxacinwas consistently associated

with collateral sensitivity toward aminoglycoside antibiotics in all

different genetic backgrounds. In addition, the fold change rela-

tive to the ancestral strains was higher in clinical isolates than

observed inPAO1evolution. Notably, the clinical isolates evolved

to azithromycin and ciprofloxacin resistance (173-1991-CIP and

173-1991-AZY) were 32-foldmore sensitive to colistin antibiotics

then theWT (FigureS3C;TableS1). Profoundcollateral sensitivity

was also previously observed for E. coli clinical isolates (Ima-

movic and Sommer, 2013), indicating the potential for exploiting

collateral sensitivity to optimize antibiotic regimens.

Resistance Evolution of Clinical Isolates Converges to
Conserved Collateral States
To explore the link between the phenotypic changes of labora-

tory-evolved resistant PAO1 and clinical isolates, we determined

the Spearman correlation coefficients for their resistance pro-

files. Overall, this analysis shows that exposure of different

P. aeruginosa strains to a particular drug tends to increase the

correlation between them (Figure 2B; Table S4). When consid-

ering selective antibiotic pressure in clinical isolates, all clinical

isolates exposed to aztreonam and ciprofloxacin as well as

80% of azithromycin- and tobramycin-resistant DK2 strains

increased the correlation of their susceptibility profiles to the

respective antibiotic-resistant PAO1 strains (Figure 2B). For

instance, the correlation coefficient for clinical isolate 173

evolved to ciprofloxacin changed from a negative r = �0.67

(p < 0.01) to a positive r = 0.65 (p < 0.01) (Table S4). The excep-

tion was the colistin-resistant strain, for which no changes in

correlation r were linked to the colistin-resistant PAO1 strain,

indicating that the difference with PAO1 might be reflected

in the different genetic background between DK2 and PAO1

(Gutu et al., 2015). Using PCA we observed that the phenotypic

states of the ciprofloxacin and aztreonam evolved clinical

isolates shifted their corresponding resistant PAO1 strain in

response to antibiotic resistance evolution (Figures 2C and

2D). Indeed, this analysis indicates that for some antibiotics,

exposure and subsequent resistance evolution leads to conver-

gence toward specific phenotypic states in diverse phenotypic

and genotypic backgrounds.

Genetic Determinants Involved in Collateral Sensitivity
and Resistance
To explore the genetic basis of phenotypic changes in suscepti-

bility profiles, we sequenced the genomes of experimentally

evolved strains. We observed that the impact of drug exposure

on genome-wide evolutionary paths causing collateral resis-

tance and sensitivity were associatedwith drug resistance genes

also found to be undergoing selection in chronically infected CF

patients (Marvig et al., 2013). Mutations in seven out of nine path-

oadaptive, antibiotic resistance genes (fusA1, ampC, ampD,

gyrA, gyrB, mexB, and pmrB) were observed in our adaptive

evolution experiment (Figure S4A; Table S5). Uniformly, PAO1

strains resistant to quinolone, macrolide, and tetracyclines had

mutations in the pathoadaptive gene nfxB (Marvig et al.,

2015a, 2015b) (Figure S4A). nfxB is a negative transcriptional

regulator of MexCD-OprJ efflux (Poole et al., 1996). In addition,
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drug classes listed in Table 1.
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plot of two principal component axes obtained from the PAO1 WTE normalized and log2 transformed susceptibility data for DK2 WTE and DK2 ciprofloxacin-

resistant strain (C) or aztreonam-resistant strain (D).

See also Figure S3.
as observed for resistant PAO1 strains, we detected nfxBmuta-

tions in all five ciprofloxacin-resistant DK2 lineages and three out

of five azithromycin-exposed lineages (Table S5).

To test whether nfxB mutations were indeed associated with

collateral sensitivity and resistance, thereby leading to a selec-

tive disadvantage during exposure to particular drugs such

amikacin or minocycline, we conducted a competition experi-

ment between the PAO1 WT strain and a nfxB 119C > T mutant

(azithromycin evolved PAO1). We evaluated the frequency of

the nfxB mutation from each mix population exposed to amika-

cin and minocycline drugs for which the nfxB 119C > T mutant

was collaterally sensitive or collaterally resistant, respectively.
From these experiments, we observed that the strain carrying

the nfxB mutation was selected against when treated with the

collateral sensitivity drug amikacin (Figure 3A). As expected,

the selective survival the nfxB 119C > T mutant was observed

when the strains were exposed to the collateral resistance

drug azithromycin (Figure 3B).

To further study the mechanisms associated with nfxB-

induced collateral sensitivity, we conducted a proteomic charac-

terization of the resistant strains evolved to azithromycin and cip-

rofloxacin resistance that harbored nfxB mutations. The MexC

transporter protein, was the most upregulated protein in both

strains (t ratio 4.2 for ciprofloxacin-resistant and 6.2 for
Cell 172, 121–134, January 11, 2018 125
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azithromycin-resistant strains; p < 0.01) (Figures 3C and S4B).

The increased abundance of the MexC protein suggested that

the manipulation of drug efflux transporters could provide

improved treatment effects by enhancing selective bacterial

vulnerabilities. Importantly, nfxB is the only known regulator of

MexCD-OprJ efflux (Poole et al., 1996) and mutations that lead

to a truncated, incomplete, and non-functional NfxB protein

would affect the repressor binding capacities (Figures S4C and

S4D) suggesting that nfxB gene mutations could be a potential

sequence-based biomarker indicating collateral sensitivity.

nfxB Mutations Accumulate Late during Resistance
Evolution
A stepwise acquisition of the mutations that confer low-level

resistance can lead to increased resistance to antibiotics (Solé

et al., 2015) and, consequently, poorer treatment outcomes

(Falagas et al., 2012). However, if such mutations also lead to

collateral sensitivity, it may be possible to select against such

resistance evolution through rational drug treatment. To assess

this, ciprofloxacin- and azithromycin-treated populations were

monitored for the presence of nfxB mutations at day 3, 6,

and 8 during the adaptive evolution experiment. Day 8 was cho-

sen because the treated populations reached maximal levels of

resistance (Figure S1D). The first mutation detected in the cipro-

floxacin-treated population was at day 6 in gyrA (248C > T) at

a frequency of 12%, while no mutations were detected in nfxB

(Figure 3D). Finally, at day 8, the gyrA mutation was present in

99.2% of the population, and three different nfxB were detected

in the population at similar frequencies (Figure 3D). In popula-

tions exposed to azithromycin, four differentmutations emerged,

of which the mutation nfxB115A > C was detected in half of the

total population at day 8 (Figure 3E). No other mutations were

detected for the azithromycin-exposed strains (Table S5).

The tendency to fix nfxB mutations in populations at later

stages of the adaptive evolution of ciprofloxacin resistance (after

gyrA mutation) (Figure 3D) could suggest that strains harboring

only a mutation in gyrA have the potential to acquire further

mutations and change strain susceptibility profiles. To establish

the association of collateral sensitivity with the nfxB mutations

that emerged at the end of the adaptive process, we compared

the PAO1 observations with selected the clinical isolate (173-

2005). Strain 173-2005, which carried a mutation in the gyrA

gene, also conferred elevated resistance to ciprofloxacin (Yang

et al., 2011). Indeed, when the 173-2005 strain was exposed to

ciprofloxacin for 10 days, the point mutation was detected in

the nfxB gene (Table S5), and theMIC for ciprofloxacin increased

further from 0.5 to 32 mg.mL�1 (Figure 3F). Consequently, resis-
Figure 3. Genetic Basis for Collateral Resistance and Collateral Sensit

(A) Competition experiment depicting the survival of WT over the resistant strain

(B) The selective survival of resistant strain and eradication of the WT was obser

(C) MexC abundance in WTE, ciprofloxacin- and azithromycin-resistant strains.

represent SD. Significance levels indicate the p value of the t test (Table S6).

(D) nfxB mutations in populations at after gyrA mutation during adaptive evolutio

(E) nfxB mutations at the end of the adaptive process for azithromycin exposed

(F) Changes in susceptibility profiles for 173-2005 relative to ancestral clinical

(Table S1). Dashed lines mark the EUCAST clinical resistance breakpoints (Table

See also Figure S4.
tant strains with altered nfxB gene also exhibited collateral sensi-

tivity toward several different antibiotic classes (Figures 1A and

S4A). This suggests that treatment strategies exploiting collat-

eral sensitivity could also be applied to highly resistant strains

to sensitize them for more effective treatment.

Drug Sensitivity Oscillations in Longitudinal
P. aeruginosa Isolates
The current thinking on resistance evolution anticipates that

pathogens causing chronic infections become increasingly

resistant in response to antibiotic treatment. Yet, our findings

of widespread collateral sensitivity interactions among clinically

applied drugs would suggest that the resistance profiles of

chronic infecting bacteria would fluctuate over time in response

to different drug exposures. To test this hypothesis, we deter-

mined changes in drug susceptibility for longitudinally collected

clinical isolates of the transmissible DK2 spanning a sampling

period of over three decades, and corresponding to more than

200.000 generations from early and late chronic infection (Marvig

et al., 2013; Yang et al., 2011). We selected isolates to represent

particularly illustrative examples of population dynamics for the

DK2 lineagewith temporal and spatial heterogeneity (CF patients

173, 211, and 333). In addition, we also included the 30-1979

DK2 strain, which was previously determined to be the closest

common ancestor of the DK2 lineage (Yang et al., 2011). For

each longitudinal isolate, we determined changes in suscep-

tibility profiles toward 22 drugs relative to the ancestral strain

(30-1979) (Figure 4A; Table S1). In agreement with our hypothe-

sis, we observed oscillatory dynamics in the resistance levels

of the lineages sampled (Figure 4A). Importantly, we did not

observe significant absolute increases in the resistance levels

of isolates from patients across the decades of the longitudinal

sampling. Indeed, the last longitudinal isolate analyzed for

patient 333 exhibited increased susceptibly toward 14 drugs

relative to the first isolate taken more than 15 years earlier (Fig-

ure 4A). Decreases in MICs were also observed for several anti-

biotics from the aminoglycoside, quinolone, and tetracycline

drug classes in the two strains isolated in sub-lineage A (173-

1991) and sub-lineage C (173-2005) (Figure 4A). Interestingly,

the 173-1991 and 173-2005 isolates were the last isolates

detected from each sub-lineage, suggesting that this reduction

in MIC could be linked to their eradication.

Phenotypic Convergence of Laboratory-Evolved Strains
and Clinical Isolates
To investigate potential associations between susceptibility

profiles in the laboratory-evolved strains and clinical isolates,
ivity

harboring the nfxB mutation when treated with collateral-sensitive antibiotic.

ved in competition experiment when treated with collateral-resistant antibiotic

Data are presented as the means of three biological replicates and error bars

n to ciprofloxacin.

bacterial populations.

isolated (30-1979) and upon further resistance development to CIP and AZY

1).
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Figure 4. Oscillatory Dynamics in Susceptibility Profiles from P. aeruginosa Chronically Infected CF Patients

(A) Susceptibility profiles for clinical isolates obtained by longitudinal sampling of DK2 clinical isolates from three CF patients chronically infected by

P. aeruginosa. For each strain, MIC values were determined toward 22 drugs. Drug susceptibility was determined based on the average values of five replicates.

MIC values were normalized to the baseline susceptibilities of the immediate common ancestor of the DK2 isolates (isolate 30-1979) (Table S1).

(B) A heatmap of Spearman’s correlation coefficients (r) summarizes the pairwise correlative relationship between the altered susceptibilities of the experi-

mentally evolved resistant PAO1 strains and DK2 isolates from CF patients. The upper-right color panel is an indicator of the Spearman correlation coefficient (r).

Circle size represents the strength of r. Only statistically significant correlations are shown (p > 0.05, two-tailed test) (Table S6).
we calculated the Spearman correlation coefficients be-

tween their susceptibility dynamics of the clinical isolates

and the collateral sensitivity and resistance profiles of the

laboratory-evolved strains (Figure 4B). A Spearman covari-

ance matrix revealed 38 significant correlations between

clinical isolates and one or more of the resistant PAO1 strains

(p < 0.05, a two-tailed significance test) (Figure 4B; Table

S6). Notably, several clinical isolates with high positive

correlation coefficients to resistant PAO1 strains exhibited

increased susceptibility toward different antibiotic classes.

Such changes in resistance dynamics were particularly pro-

nounced for the last isolate from patient 333 (333-2007c).

This strain had increased sensitivity toward drugs from the

quinolone, b-lactam, fosfomycin, and rifampicin drug classes

(Figure 4A) and had a strong positive correlation to the

colistin-resistant PAO1 strain (r = 0.6; p < 0.01) (Figure 4B;

Table S6). In addition, negative correlation between clinical

isolates and one or more of the resistant PAO1 strains

(p < 0.05) was also observed (Figure 4B). Between PAO1-

resistant strains strong negative correlation coefficients were

observed for antibiotics that had reciprocal collateral sensi-

tivities (e.g., colistin and aztreonam) (Figure S3A) indicating

incompatible drug resistance pathways.
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Phenotypic Convergence during Antibiotic Therapy
In Vivo

To assess whether collateral sensitivity might modulate popula-

tion dynamics of a chronic P. aeruginosa population in the

CF lung, we studied a chronically infected CF patient during a

2-week course of intensive antibiotic treatment. We performed

a comprehensive phenotypic screen of 626 clinical isolates

from sputum samples of a CF patient before (t1), during (t2),

and at the end of intensive antibiotic therapy (t3) (see STAR

Methods). Notably, the number of colonies that could be culti-

vated from the sputum sample t3 was significantly reduced

compared to t1 and t2 (p < 0.01, one-way ANOVA) (Figure 5A),

indicating effective antibiotic therapy for chronic CF lung infec-

tion. For all isolates recovered, we examined their phenotypic di-

versity based on antibiotic susceptibility for six antibiotics from

the quinolone, b-lactam, aminoglycoside, and polymyxin classes

(Figures 5B–5E; Table S7). The population before treatment (t1)

exhibited the highest phenotypic diversity with regards to anti-

biotic susceptibility, which decreased significantly during the

course of antibiotic treatment by 7-fold (p value = 6.125e�12,

pairwise comparison of Euclidian distance using t test) (Fig-

ure 5B). Interestingly, the 275 isolates from the diverse popula-

tion selected before intensive antibiotic treatment (t1) comprised
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both strains susceptible and strains resistant to all six antibiotics

tested (according to EUCAST clinical breakpoints) (Figures 5C

and S5A–S5F). For instance, different levels of colistin resistance

were detected before treatment (e.g., isolates that were both

4-fold above and 7-fold below EUCAST clinical breakpoints for

colistin were detected) (Figures 5C and S5A). Yet, all isolates

from the end of antibiotic treatment (t3) exhibited MIC 4-fold

below EUCAST clinical breakpoints for colistin (Figures 5E and

S5A). Of note, collateral sensitivity toward colistin in laboratory

evolution experiment was a consequence of resistance develop-

ment to b-lactam and aminoglycoside antibiotics (Figure 1A), all

of which were applied in the treatment of the studied CF patient.

The observed selection for isolates susceptible to colistin sug-

gest that this collateral sensitivity interaction is relevant when

treating chronic lung infections in CF patients.

Since the laboratory evolved strainsconverged toward specific

phenotypic states (Figure 2A), we also applied PCA to charac-

terize the phenotypic convergence of P. aeruginosa populations

during in vivo treatment. Interestingly, we observed a striking

phenotypic convergence of the characterized isolates during

treatment (Figures 5F–5H and S5G). While isolates obtained

before the intensive treatment were found in all four regions

(I–IV) of the PCA plot (Figures 5F and S5H), the isolates at the

end of the treatment converged to one region of PCA plot (region

II) (Figure 5H) that represented a phenotypically uniform popula-

tion highly susceptible to colistin (Figures 5E and S5A).

Antibiotic Therapy Selects for Genetically Distinct
Subpopulations with Specific Phenotypes
Based on the observation that antibiotic treatment converges

a phenotypically diverse population to a uniform antibiotic

susceptibility phenotype (Figures 5F–5H), we decided to genet-

ically characterize these populations. The majority of isolates

sampled at t1 clustered in two subpopulations that were charac-

terized by different levels of susceptibilities to fluoroquinolone

antibiotics (Figure 5C). Accordingly, we separated the t1 popu-

lation into quinolone susceptible (t1-a) and quinolone-resistant

isolates (t1-b) based on the EUCAST breakpoints (Table 1).

Given that both populations t1-b and t3 were characterized by

a high level of quinolone resistance, we were interested whether

population t3 was related to the quinolone-resistant subpopula-

tion t1-b. We compared individual and shared mutations de-

tected (Table S8) among different populations and found that

92.3% of the SNPs detected in population t3 were also

observed in subpopulation t1-b (Figure 6A; Table S9). This

finding suggested that population t3 and a subset of t1-b pop-
Figure 5. Shift in Susceptibility Profiles during Intensive Antibiotic Tre

(A) Recovery ofP. aeruginosa from sputum on selectivemedia. Platingwas done in

recover P. aeruginosa. The line dots represent the average and error bars repres

(B) Decrease in overall phenotypic diversity during the course of antibiotic treatme

between the normalized values for susceptibility profiles.

(C–E) Sensitivity profiles during antibiotic treatment of CF patient. Heatmap repres

during (D), and at the end of treatment (E). Antibiotic and class abbreviations are l

the isolate MIC value relative to the EUCAST clinical breakpoints (Table 1). Drug

(Table S7). The order of isolates was determined by hierarchical clustering using

(F–H) Space plot of two principal component axes obtained from the 626 clinical i

Color coding depicts the sampling time points before (F), during (G), and at the e

See also Figure S5.
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ulation originate from the same lineage. On the other hand,

only 10 SNPs detected in t3 population were shared with quino-

lone susceptible populations t1-a and t2. Notably, both popula-

tions (t1-a and t2) that were more susceptible to quinolone

drugs shared 98.6% of mutations (Figure 6A; Tables S8 and

S9), which suggests that these populations originated from the

same lineage. Emergence of the quinolone-resistant t3 popula-

tion descendent from a small subset t1-b was observed after

drug treatment was switched from ceftazidime to levofloxacin

(Figures 5C–5E). The phylogenetic relatedness between the

different populations determined by population sequencing

was also supported by whole-genome sequencing of nine indi-

vidual isolates selected from different subpopulations (Fig-

ure 6B; Table S8). We observed that isolates from t1-b-A and

t3-J populations were DK2 type, while single isolates from

t-1-a and t2 were different clone type (Marvig et al., 2015a).

Selection against nfxB Mutants during Antibiotic
Treatment in the CF Lung
Our in vitro work demonstrated that nfxB mutations lead to an

overexpression of the MexC transporter (Figure 3C) leading

to collateral sensitivity toward aminoglycosides, b-lactams,

and colistin (Figure 1A). We showed that nfxB 119C > T mutants

where outcompeted by WT during exposure to the aminoglyco-

side amikacin. Accordingly, we speculated that nfxB mutations

present in the t1 population might also be eradicated during

the intensive antibiotic therapy in the studied CF patient. Accord-

ingly, we mapped the reads from population sequencing data

from t1-a and t1-b to the nfxB gene to identify putative collateral

sensitivity mutations. We found that 37.3% of t1-b subpop-

ulation harbored a mutation in the nfxB gene (nfxB245G > T)

(Figure 6C). Although the t1-b subpopulation had overlapping

phenotypic and genotypic similarities with the population that

emerged at the end of treatment (t3), none of the isolates in pop-

ulations obtained at t1-a, during (t2), or at the end (t3) of antibiotic

treatment harbored mutations in nfxB gene (Figure 6D). Loss of

isolates with nfxBmutations followed after exposure to b-lactam

and aminoglycoside antibiotics toward which resistant PAO1

and DK2 strains harboring nfxB mutations were collateral sensi-

tive (Figures 1A and S4A). This observation suggests that the

nfxB245G > T mutation is conferring collateral sensitivity in vivo

in a similar manner as observed in lab evolved strains. Further-

more, this finding supports the notion that treatment of chroni-

cally infected CF patients could be individualized based on

specific diagnostic markers that are associated with a collateral

sensitivity to specific drugs.
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Figure 6. Population Switch during Antibiotic Treatment In Vivo

(A) Population sequencing of clinical isolates. Individual and shared mutations were plotted and used to evaluate population divergence during treatment.

Variable percentage of shared mutations was observed among different subpopulations before (t1-a and t1-b), during (t2), and at the end of intensive treatment

(t3) (Table S9). By calculating that majority mutations found in quinolone-resistant population t3 subpopulation are shared with t1-b, population divergence was

estimated. Different color coding represent mutation shared by different subpopulations

(B) Genotype distance and susceptibility profiles among selected isolates. The order of isolates was determined by hierarchical clustering using the shared

mutation as a value for the distancemeasure. Antibiotic and class abbreviations are listed in Table 1. Color coding represents the fold increase or decrease inMIC

value relative to the EUCAST clinical breakpoints (Table 1). An average of five replicates were tested to determine the drug susceptibility (Table S1).

(C) nfxB mutation frequency in quinolone-resistant subpopulations t1-a and t1-b.

(D) Loss of resistant isolates harboring nfxB after exposure to b-lactam and aminoglycoside antibiotics during treatment of CF patient.
DISCUSSION

Chronic lung infectionscausedbyP.aeruginosaare challenging to

treat due to the ability of this opportunistic pathogen to persist and

develop resistance during treatment (Poole, 2011). In this study,

we show that evolution of resistance was associated with up

to 8- and 32-fold reductions in MICs toward other antibiotics for

PAO1 and DK2, respectively. This level of collateral sensitivity

could have substantial clinical impact for the management of

chronic infections, inwhichpatientsareexposed toseveral rounds

of antibiotics, or even lifelongantibiotic therapies, as is thecase for

CF patients (Johansen et al., 2004). Overall lowMIC values within

the susceptibility range are associated with better treatment

outcomes and lower mortality rates (Falagas et al., 2012). For

instance,a studyon the impactof carbapenemMICvaluesonhos-

pital mortalities revealed that for each 2-fold increase in the MIC

value, the probability of death increased by 2-fold (Esterly et al.,

2012). Accordingly, our findings indicate that treatment of chronic

infections can be optimized through the rational deployment of
drugsbasedon their collateral sensitivity andconvergence toward

distinct phenotypic states. For instance, our results suggest that

application of ciprofloxacin results in subsequent resistance

development and phenotypic convergence. Ciprofloxacin resis-

tance could enhance the action of tobramycin, since the collateral

sensitivity was observed in the resistant PAO1 and DK2 strains.

Similarly, colistin action could be enhanced in bacteria that devel-

oped resistance toward ciprofloxacin or aztreonam. Collateral

sensitivity observed toward colistin, an important drug for treat-

ment of P. aeruginosa infections, additionally supports exploita-

tion of collateral sensitivity to counter drug resistance.

Interestingly, we find that collateral sensitivity can evolve

in response to exposure to drugs for which the organism is

already resistant. This finding should be considered given the

frequent polymicrobial infection of the CF airways. Indeed,

P. aeruginosa may be exposed to drugs administered to target

other organisms, such as S. aureus. We show that exposure to

several chemical classes of drugs, used in CF patient therapy

(tetracycline or macrolide) for other species than P. aeruginosa
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(Gibson et al., 2003), can modulate collateral sensitivity and

resistance in P. aeruginosa. Indeed, we observed phenotypic

convergences toward collateral states for DK2 strains treated

with antibiotics regardless of initial resistance level. Thus, we hy-

pothesize that by using commonly applied antibiotics according

to a specific schedule, even highly resistant strains could be

sensitized to enhance the treatment efficacy.

The genetic changes that are selected for during chronic infec-

tions by P. aeruginosa of the CF airways are being elucidated

through recent clinical genome sequencing projects that have

led to the identification of pathoadaptive genes (Marvig et al.,

2013, 2015a, 2015b). Notably, there is a substantial overlap be-

tween the pathoadaptive genes that have been identified in lon-

gitudinal clinical sequencing studies and in our studies, suggest-

ing that some pathoadaptive mutations are linked to collateral

sensitivity. For instance, mutations in the nfxB that confers resis-

tance to the quinolones, are frequently encountered in clinical

isolates (Marvig et al., 2015a, 2015b). We find that nfxB muta-

tions are associated with collateral sensitivity driven by resis-

tance evolution to several different drug classes and phenotypic

convergence. nfxB mutants were eradicated from the lung of a

chronically infected CF patient during treatment with aminogly-

coside and beta-lactam drugs leading to the eradication of a qui-

nolone-resistant subpopulation. These findings indicate that

antibiotic treatment of chronic infections can be optimized by

targeting specific mutations associated with collateral sensitiv-

ities and converged phenotypic states. Accordingly, we specu-

late that nfxB gene mutations or MexC protein abundance could

be monitored in the clinic and potentially serve as a genomic or

proteomic biomarker for collateral sensitivity.

Based on the analysis from in vivo evolved population, it seems

likely that antibiotics could be grouped for cycling approaches to

improve treatment success in chronic infections. Such treatment

could be applied jointly to enhance the drug effect against

susceptible isolates for treatment of infection against heteroge-

neous populations observed in chronically infected patients

(Foweraker et al., 2009). Besides reducing the bacterial load,

we also observed that such treatment lead to convergence to

less heterogeneous populations with more uniform phenotype.

We observed that, at the end of treatment, population was uni-

formly susceptible to colistin. This indicated that tailored treat-

ment based on preserved sensitivity interactions could benefit

infection management in treatment of CF patient infections and

potentially lead to more complete eradication of the infecting

population. Such treatment could be individualized based on

specific genomic or proteomic biomarkers such as nfxB or

MexC, which we have found to be linked to collateral sensitivity

phenotypes. Future studies will likely identify additional genetic

markers of collateral sensitivities, enabling improvedandperson-

alized treatment of chronically infected patients.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Pseudomonas aeruginosa PAO1 Søren Molin lab N/A

Pseudomonas aeruginosa DK2 DK2 Collection

(Marvig et al., 2013)

N/A

Biological Samples

Cystic fibrosis sputum Helle Krogh Johansen N/A

Chemicals, Peptides, and Recombinant Proteins

Amikacin Sigma-Aldrich Cat No. A2324

Gentamicin Sigma-Aldrich Cat No. G1264

Tobramycin Sigma-Aldrich Cat No. T4014

Ciprofloxacin Sigma-Aldrich Cat No. 17850

Levofloxacin Sigma-Aldrich Cat No. 28266

Ampicillin Sigma-Aldrich Cat No. A9518

Piperacillin Sigma-Aldrich Cat No. P8396

Carbenicillin Sigma-Aldrich Cat No. C1389

Ticarcillin Sigma-Aldrich Cat No. T5639

Aztreonam Sigma-Aldrich Cat No. A6848

Cefepime Sigma-Aldrich Cat No. A3737

Cefuroxime Sigma-Aldrich Cat No. C4417

Ceftazidime Sigma-Aldrich Cat No. A6987

Meropenem Sigma-Aldrich Cat No. M2574

Imipenem VWR Cat No. ABCAAB141030-0

Minocycline Sigma-Aldrich Cat No. M9511

Doxycycline Sigma-Aldrich Cat No. D1822

Azithromycin Sigma-Aldrich Cat No. 75199

Erythromycin Sigma-Aldrich Cat No. E5389

Clarithromycin Sigma-Aldrich Cat No. C9742

Colistin Sigma-Aldrich Cat No. Y0000277

Fosfomycin Sigma-Aldrich Cat No. 34089

Rifampicin Sigma-Aldrich Cat No. R3501

Trimethoprim Sigma-Aldrich Cat No. T7883

Sulfamethoxazole Sigma-Aldrich Cat No. S7507

Critical Commercial Assays

DNA Blood and Tissue Kit QIAGEN Cat No. 69504

Nextera XT kit Illumina FC-131-1096

TrueSeq Nano Illumina FC-121-4003

Deposited Data

Raw genome sequence data This study PRJNA414086

Raw proteomics data This study https://www.ebi.ac.uk/pride,

ProteomeXchange PXD007972

Antibiotic susceptibility data This study https://www.mendeley.com/sign-in/?routeTo=

https%3A%2F%2Fapi.mendeley.

com%2Foauth%2Fauthorize%3Fredirect_

uri%3Dhttps%253A%252F%252Fdata.

mendeley.com%252Fauth%252Fcallback%26

scope%3Dall%26state%3D579590%26

response_type%3Dcode%26client_id%3D1025

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Antibiotic resistant variants of PAO1 and DK2 This study N/A

Oligonucleotides

2_mexD_nfxB-_up ACGCTGTTTCACCAGGGTAG This study N/A

2_morA_nfxB-lp AGCATCAACAGGACCAGCAA This study N/A

Software and Algorithms

The collateral sensitivity drug cycle detection program This study https://github.com/MostafaEllabaan/

DrugCyclesPrediction/blob/master/

DrugCycleDetector.py

Cytoscape (3.1.0) Shannon et al., 2003 http://www.cytoscape.org/release_

notes_3_1_0.html

R packages: PerformanceAnalytics, corrplot,

FactoMineR, factoextra, ggdendro and ggplot2

R software https://www.r-project.org/

PRISM 7.0a GraphPad Software https://www.graphpad.com/support/

prism-7-updates/

Progenesis QI for Proteomics versions 2.0 Nonlinear Dynamics,

A Waters Company

http://www.nonlinear.com/progenesis/

qi-for-proteomics/v2.0/

CLC Genomic Workbench 9.0.1. CLC QIAGEN https://www.qiagenbioinformatics.com

Other

Synthetic CF sputum Palmer et al., 2007;

Wong et al., 2012

N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Morten Otto Alexander

Sommer (msom@bio.dtu.dk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial Strains and Growth Conditions
All experiments were performed in MHBII medium or Synthetic CF sputum (Palmer et al., 2007) supplemented with 5%mucin (Wong

et al., 2012). PAO1 and DK2 drug-resistant phenotypes were selected as described below. Clinical isolates of the P. aeruginosa DK2

lineage were obtained from the Danish CF collection from patients 173, 211 and 333 (Marvig et al., 2013). The bacterial strains are

described in Table S1.

CF Patient
Patient CF124 was 52 years old male suffering from cystic fibrosis genetic disorder. Patient was chronically infected with

P.aeruginosa for 43 years at the collection date. Sputum sample was collected during routine diagnostic sampling from chronically

infected CF patient. The local ethics committee at the Capital Region of Denmark Region Hovedstaden approved the use of the

stored P. aeruginosa isolates: registration number H-4-2015-FSP. Patient gave informed consent.

At home, patient was receiving 600 mg each day of ceftizadime via inhalation. Patient was received to hospital during the period

of acute exacerbation. First sputum sample was taken then (sample t1) and patient was treated with ceftazidime (2g, twice daily),

azithromycin (250 mg, oral, once daily), meropenem (2 g, intravenously, twice daily) and tobramycin (400 mg, intravenously, once

daily). On the day 7 of treatment, second sputum sample was taken (sample t2), and then the treatment was changes from ceftazi-

dime to levofloxacin, twice daily (commercially available as Quinsar). Administration of other antibiotics remained the same following

7 days, at which point the third sputum sample was obtained (t3).

P.aeruginosa Isolation from Sputum Samples
Sputum samples were stored in 15%–20% glycerol at 80%. For each sampling point, 300 mL of stored sputum sample was plated

onto large agar plates (area) containing selective P.aeruginosa media (Pseudomonas Isolation Agar, Sigma). Agar plates were

incubated for 2 days (42 ± 2 h) at 37 �C. Single colonies were selected, grown in MHBII and stored at �80 �C for further phenotypic

and genotypic characterization.
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Adaptive Evolution Experiments
A single colony was grown overnight in synthetic CF sputum supplemented mucin (SCFM) media. Eight microliters of overnight

culture were then inoculated into 1 mL of SCFM media containing the 2-fold dilution of antibiotics listed in Table 1. Populations

were grown on an orbital shaker (180 rpm) at 37 �C in 24-well plates. After 22 hours, 8 mL of culture from the well with the highest

concentration of antibiotics and showing minimal growth (as measured by an optical density of OD600 > 0.4) was transferred

into 1 mL of fresh SCFM medium containing a 2-fold dilution of antibiotics. On day 8, the bacteria reached EUCAST levels of resis-

tance. Thus, during day 9 and 10, antibiotic concentrations remained the same as on day 8. Final drug-treated cultures were frozen

at�80 �C in 15% glycerol. The strains were then streaked on solid media (SCFM supplemented with 3.5% agar), and a single colony

was selected, grown in liquid SCFM and stored at �80 �C for further phenotypic and genotypic characterization.

METHOD DETAILS

Drugs
Drug working solutions were made from solid stock (Table 1). All drugs solutions were sterilized with 0.22 mm filters and stored

at �20 �C until use.

Collateral Susceptibility Profiles and MIC Determination
Drug-resistant strains were streaked on Mueller-Hinton Agar (MHA) (Sigma) and incubated at 37 �C. The duration of incubation was

variable for different strains. All PAO1 strains were incubated overnight (18 ± 2 h), while DK2 strains were incubated for 2 days

(42 ± 2 h) due to slower growth. A single colony was selected and grown in Mueller-Hinton Broth II (MHBII) (Sigma). After overnight

incubation (for the PAO1 strains) and 2-day incubation (for the DK2 strains) at 37 �C and 180 rpm, bacterial cultures were used forMIC

testing. Approximately 1x105 cells per well were inoculated in 96-well plates. For each strain, 5 sets of experiments were performed to

determine the drug susceptibility. The percentage of inhibition was calculated according to the following formula: 1 � [A600 drug/

A600 untreated control]. The inhibitory concentration was defined as the lowest concentration of the drug that inhibited 90% of

the growth of the strain tested (MIC) relative to the WTE.

Competition Experiments
Overnight cultures of WT and azithromycin-exposed PAO1 strain were inoculated 1:1 to approximately 5x105 cell/well into 96-well

plates. Mixed cultures were treated with 2 mg.ml-1 amikacin or 4 mg.ml-1 minocycline in MHBII. Control samples were not treated with

antibiotics. Samples were incubated at 37 �C for 18 h. All experiments were performed in triplicates. Specific strain abundance was

calculated based on amplicon sequencing described below.

Amplicon sequencing
Three replicates done for each completion experiment were joined in one sample and genomic DNA of mixed population was pre-

pared using the DNA Blood and Tissue Kit following manufacturer instructions (QIAGEN). Two mg of DNA was used as template for

PCR reaction to amplify the nfxB region. PCR primers (2_mexD_nfxB-_up ACGCTGTTTCACCAGGGTAG and 2_morA_nfxB-lp

AGCATCAACAGGACCAGCAA) were designed to amplify full nfxB gene (564 bp) and surrounding region (full length PCR product

size = 3021 bp). Specific PCR product was selected on 1% agarose gel. Gel-purified PCR product was use as DNA template for

library preparation using the NexteraXT kit (Illumina). Amplicon sequences of mixed populations were obtained on the MiSeq

platform.

Whole-genome Sequencing
Genomic DNA was prepared using the DNA Blood and Tissue Kit following manufacturer instructions (QIAGEN). Libraries were

prepared using the NexteraXT kit (Illumina) and TrueSeq Nano (Illumina). Genome sequences of resistant strains were obtained

on the MiSeq platform with a coverage of > 50 fold.

Variant Detection
The sequences were trimmed to exclude low-quality reads and reads less than 75 bp. The remaining reads were then mapped

against the P. aeruginosa PAO1 (GenBank Accession number NC_002516.2) or DK2 (GenBank Accession number CP003149)

reference genomes using Genomic Workbench 9.0.1. (CLC Bio, QIAGEN). Parameters were as follows: mismatch gap 2, mismatch

count 3, similarity fraction 0.9 and length fraction 0.5.

Mutation Detection in the Genomic Data
Point mutations or short InDels were identified based on Quality-based variant detection approaches implemented in Genomic

Workbench 9.0.1. Single-nucleotide variant detection was carried out using a neighborhood quality standard algorithm with a

minimum neighborhood quality score of 15, a maximum gap penalty of 2 and a minimum variant base of 10. The minimum variant

frequency was set to 80%. For population sequencing, the minimum variant frequency was set to 10%. For each mutation detected

in population, presence of mutation below 10%was verified by additional analysis allowing detection of known low frequency variant
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(1%–10%). Mutation detected for populations fromCF sputum sample was filtered based on 5% frequencies andminimum 10 reads

coverage. Variants were filtered using an additional WT PAO1 sequenced strain. The backgroundmutations forWTPAO1 are listed in

Tables S5.

Sample Preparation for Proteomic Analysis
P. aeruginosa overnight cultures were diluted 1:100 in 10 mL of MHBII. After 10 h of incubation at 37 �C and 180 rpm, cells were

collected by centrifugation, snap frozen on dry ice and stored at �80 �C. Cell preparation and proteomic analysis were performed

as previously described (Bonde et al., 2016). First, 100 mL of urea (8 M, 75 mM NaCl, 50 mM Tris-HCl, pH 8.2) was added to the

cell pellets. After this, two 3-mm zirconium oxide beads (Glen Mills, NJ, USA) were added, and the cells were disrupted using aMixer

Mill (MM 400 Retsch, Haan, Germany) for 2 min at 25 Hz. Following 30min at 4�C, the cells were again subjected to 2min in themixer

mill, after which an additional 100 mL of the urea solution was added. Following another cycle of 30 min at 4�C followed by 2 min at

25 Hz, the samples were centrifuged 10 min, and 100 mL of supernatant was collected and diluted with 400 mL of 25 mM ammonium

bicarbonate. Samples were concentrated to 100 mL using a 3 kDa cutoff filter. Samples containing 100 mg of proteins in 50 mL of

solution were used for digestion. Before adding 1 ug/sample trypsin, 5 mL of 100 mM DTT was added, and samples were kept at

37�C for 45 min. Subsequently, 10 mL of 100 mM iodoacetamide was added, and samples were kept in the dark for 45 min. Tryptic

digestion was carried out for 8 h, after which 10 mL of 10% TFA was added, and samples were StageTipped using C18 (Empore, 3M,

USA) according to a previously described procedure (Rappsilber et al., 2007).

NanoUPLC-MSE Acquisition
For Nanoscale LC analysis of the trypsin-digested samples, a nanoACQUITY system (Waters, USA) equipped with a Symmetry C18

5-mm, 180 mm3 20 mm precolumn and a nanoACQUITY BEH130 C18 1.7-mm, 75 mm3 250 mm analytical reversed-phase column

(Waters, USA) was used. For each sample, 1 mg of protein was trapped on the precolumn using mobile phase A, consisting of 0.1%

formic acid in water with a flow rate of 8 mLmin�1 for 4 min. Mobile phase B consisted of 0.1% formic acid in acetonitrile. A reversed-

phase stepped gradient was used to separate peptides: i) from 6% to 14% acetonitrile in water over 28 min, ii) from 14% to 25%

acetonitrile in water over 40 min, iii) from 25% to 38% acetonitrile in water over 15 min, iv) from 38% to 60% acetonitrile in water

over 10 min, and v) from 60% to 99% acetonitrile in water over 20 min. Between each injection, a 30 min wash method was applied.

Both methods used a constant column temperature of 35�C and a flow rate of 250 nL min�1.

The described gradient data were acquired using a Synapt G2 (Waters, Manchester, UK) Q-ToF instrument operated in positive

mode using electrospray ionization with a NanoLock-spray source. Using the internal fluidics system of the mass spectrometer,

leucine enkephalin was used as a lockmass. The lockmass channel was sampled every 60 s. For each injection, themass spectrom-

eter was operated in resolution mode, with continuum spectra being acquired. During acquisition, the mass spectrometer alternated

between low- and high-energy modes using a scan time of 0.8 s for each mode over 50–2,000 Da. In the low-energy MSmode, data

were collected at a constant collision energy of 4 eV. In the elevated-energy MSmode, the collision energy was increased from 15 to

40 eV.

Protein Identification
Protein identification and quantification were obtained using Progenesis QI for Proteomics version 2.0 and the P. aeruginosa UniProt

proteome database (ID: UP 208964). Settings for the PLGS search engine were FDR 1%, tryptic peptides with one missed cleavage

allowed, and carbamidomethylation of cysteine residues as fixedmodification and oxidation ofmethionine residues as variablemodi-

fication. For quantification, only unique peptides of the proteins of interest were used, enabling comparisons of protein abundance

across the different samples (Bantscheff et al., 2007).

QUANTIFICATION AND STATISTICAL ANALYSIS

The inhibitory concentration was defined as the lowest drug concentration that prevented 90% growth (MIC or IC90). The percentage

of growth inhibition was calculated according to the following formula: 1 � [A600 drug/A600 control]. Data for the MICs are presented

as the means of 5 independent replicas (±SD). Heatmaps showing susceptibility profiles and correlations were generated in Excel

(14.6.1). Hierarchical clustering was performed using the similarity of normalized MIC values as the distance measured in R software

using ‘‘ggplot2’’ and ‘‘ggdendro’’ packages. Tomeasure the significance of the fold of increase in resistance betweenWTE and resis-

tant strains we calculated growth inhibition of resistant strain toward 3 different antibiotics. Based on these results, we approximated

the distribution of growth inhibition using the mean and standard deviation of the five replicates. We then generated 3.000 of simu-

lations using the growth inhibition distributions. The concentration associated with 90% growth inhibition is then extracted for both

WTE and resistant strain from the results simulated for each antibiotic. For the two vectors (strains) associated, we employed t test

with alternative hypothesis ‘‘greater’’ to test the fold of increase between 1 and 10 with increasing factor of 0.5. The p value associ-

ated with each fold of increase was reported.

Networks connecting collateral sensitivity or resistance were explored and visualized using Cytoscape (3.1.0) (Shannon et al.,

2003). To detect collateral sensitivity drug cycles, we have developed a software system using Python 2.7.2 that reads the drugs

collateral sensitivity profiles into a dictionary data structure which links the drug with its corresponding collaterally sensitive drugs.
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A cycle is found if the first drug deployed maps to a certain number of drugs that consequentially collaterally sensitive to each other

and the first drug in the cycle is collaterally sensitive to the last one drug. To determine the correlations between the susceptibility

profiles of resistant strains, the MIC values were normalized to the WTE and log2 transformed. A Spearman’s correlation was

chosen due to improved handling of non-linear correlations. The packages ‘‘PerformanceAnalytics’’ and ‘‘corrplot’’ in R software

were used for analysis of correlation plots, covariance matrix. The packages ‘‘FactoMineR,’’ ‘‘factoextra’’ were used for PCA

analysis. The ggplot2 plotting system was used for data visualization.

Protein identification and quantification were obtained using Progenesis QI for Proteomics versions 2.0 with only unique peptides

of the proteins of interest. To obtain a uniform normalization across all samples from different batches, 47 ribosomal proteins

detected in each dataset were used to introduce the data normalization factors. Data are presented as the means of 3 independent

replicas with the SE of difference. The abundance of specific proteins was calculated based on the levels of the proteins in the WTE

samples. t tests were performed using PRISM 7.0a to determine the ratio of the proteins with significantly altered abundance (95%

confidence). Only proteins with at least a 1.5-fold change relative to the WTE strains (p > 0.05, t test) and with 3 identified unique

peptides were reported as the altered proteome in Figure S4B.

Phenotypic population diversity was calculated for each pair of isolates in the population. For this purpose, the Euclidian distance

between the normalized value for susceptibility profiles of 6 antibiotics was calculated. This procedure formed a vector that includes

all the pairwise distances between isolates in the population. The confidence level was determined using t test at 95% confidence

level of the two vectors considering the alternative = ‘‘greater.’’ To specify the fold of increase, the diversity-declining population was

multiplied by an increasing factor and compare with the diversity of population of interest.

DATA AND SOFTWARE AVAILABILITY

The collateral sensitivity drug cycle detection program is available at https://github.com/MostafaEllabaan/DrugCyclesPrediction/

blob/master/DrugCycleDetector.py. All genome sequence data are available in Sequence Read Archive (SRA) under submission

PRJNA414086. Raw proteomics data are available via ProteomeXchange with identifier PXD007972.
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Figure S1. Selection for Resistance during Laboratory Evolution Experiments and Collateral Changes in Susceptibility Profiles, Related to

Figure 1

(A–F) Increase in antibiotic resistance during adaptive evolution experiment in SCFM. Fold increase depicts the well from each day transfer wasmade in antibiotic

gradient plate. Fold increase is calculated relative to the day 1.

(G–J) Resistance that alters the collateral sensitivity profiles of parallel evolved PAO1 strains. Three outcomes of resistance development were observed: (G) no

change in susceptibility profiles relative to the WTE (black line), (H) collateral resistance or decrease in drug susceptibility relative to the WTE (red line) and (I)

collateral sensitivity or increase in drug susceptibility relative to the WTE (blue line). For each strain, five replicates were performed to determine the drug

susceptibility (±SD, error bars). (J) Significance test of the fold of difference in resistance between theWTE and ciprofloxacin resistant strain. Using the mean and

standard deviation of the five replicates, growth inhibition of ciprofloxacin resistant strains toward three different antibiotics was calculated. P-value was

determined using t test test with alternative hypothesis ‘‘greater’’ for the fold increase between one and 10 (by factor 0.5).
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Figure S2. Complex Networks of Interactions Based on the Collateral Susceptibility Profiles, Related to Figure 1

(A) Collateral sensitivity network. For collateral susceptibility networks, the directed path of each arrow represents the collateral sensitivity (blue) or collateral

resistance (red) of an affected variable (drug-resistant strain) on the causal variable (drug). Antibiotic abbreviations are listed in Table 1.

(B) Number of collateral sensitivity cycles simulated for all drugs employed in the study. The cycles are based on PAO1 susceptibility profiles (Figure 1A).



AZE CIP AZY TOB COL

Strain drug resistance

gur
D

AZE
PIP

CAR
CFZ

MER

CLA
AZY
TMS

IMI

TOB
GEN
AMI

COL
FOS
LEV
CIP

DOX

RIF

CFP

64
16
4
0

-4

dlof
CI

M
egnahc

AZE CIP AZY TOB COL

30
-1

97
9

17
3-

19
91

17
3-

20
05

21
1-

19
97

b
21

1-
20

06
a

30
-1

97
9

17
3-

19
91

17
3-

20
05

21
1-

19
97

b
21

1-
20

06
a

30
-1

97
9

17
3-

19
91

17
3-

20
05

21
1-

19
97

b
21

1-
20

06
a

30
-1

97
9

17
3-

19
91

17
3-

20
05

21
1-

19
97

b
21

1-
20

06
a

30
-1

97
9

17
3-

19
91 002-371
5

21
1-

19
97

b
21

1-
20

06
a

PA
O

1

PAO1
 MIC 

0
-2
-4
-8

-16
-32

64
32
16
8
4
2

128
256
512

Bacterial strain

Drug resistance

30
-1

97
9

17
3-

19
91

17
3-

20
05

21
1-

19
97

b
21

1-
20

06
a

PA
O

1
30

-1
97

9
17

3-
19

91
17

3-
20

05
21

1-
19

97
b

21
1-

20
06

a

PA
O

1
30

-1
97

9
17

3-
19

91
17

3-
20

05
21

1-
19

97
b

21
1-

20
06

a

PA
O

1
30

-1
97

9
17

3-
19

9 1
17

3-
20

05
21

1-
19

97
b

21
1-

20
06

a

PA
O

1
30

-1
97

9
17

3-
19

91
17

3-
20

05
21

1-
19

97
b

21
1-

20
06

a

CI
M

ni
esaercniro

esaerced
dloF

A

A
I

M
NE

G
B

OT
PI

C
VEL
L

O
C A

P
M

E
Z

A C
R

A CIT
PI

P
XF

C
PF

C
ZF

C
RE

M
I

MI
FI

R
S

OF
Y

Z
A

I
RE

AL
C

X
O

D
NI

M
S

MT

AMI
GEN
TOB
CIP
LEV
COL
AMP
AZE
CAR
TIC
PIP
CFX
CFP
CFZ
MER
IMI
RIF
FOS
AZY
ERI
CLA
DOX
MIN
TMS

1

0

-1

CIP

AZE 

TOB      COL      CAR      MER       IMI        RIF

   AZY      ERI        CLA     DOX      MIN      TMS

B

C

Figure S3. A Relationship between the Altered Susceptibilities of the Experimentally Evolved Resistant PAO1 and Collateral Sensitivity

Profiles for DK2 Clinical Isolates, Related to Figure 2

(A) A Spearman correlation matrix for all pairwise susceptibility profiles of PAO1 drug-resistant strains. MIC values were normalized to WTE strain and log2
transformed. Upper right color panel is an indicator of the Spearman correlation coefficient (r). Circle size represents the strength of Spearman correlation’s

coefficient (r.) Only statistically significant correlations are shown (p > 0.05, two-tailed test) (Table S3). Scatterplots represent a positive correlation between

ciprofloxacin (CIP) and other strains resistant to four different chemical classes. The data displayed on the second scatterplot depict positive correlations (with

aztreonam and two b-lactam resistant strains) and negative correlations (with aminoglycoside and polymyxin resistant strains). In addition, plots in yellow show

strains for which no significant correlation was observed (p > 0.05, two-tailed test).

(B) Initial susceptibility levels for five DK2 isolates selected for the adaptive evolution experiment. Data are presented as the MIC fold change relative to the DK2

strain not exposed to antibiotics. (C) Collateral sensitivity and resistance during adaptive evolution for DK2 drug resistant strains. TheMIC values were normalized

to the baseline susceptibilities of each WT for evolved DK2 isolates (WTE) (Table S1).
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Figure S4. Mutational Events Leading to Drug Resistance for PAO1 and Changes in Proteome in Drug-Resistant Strains Sharing nfxB

Mutation, Related to Figure 3

(A) Mutational events leading to drug resistance for PAO1 (Table S5). The order of the drugs and resistant strains was determined by hierarchical clustering using

the shared mutation as a value for the distance measure. Antibiotic and class abbreviations are listed in Table 1.

(B) Changes in proteome in drug ciprofloxacin and azithromycin resistant strains harboring nfxBmutation. Fold change for specific proteins was calculated based

on the level of the proteins in WTE sample. t test were preformed to determine the ratio of proteins with significantly altered abundance (95% confidence). Only

proteins with at least 1.5-fold increase (P-value < 0.05, t test) were reported.

(C) MexCD-OprJ efflux is negatively regulated by NfxB repressor binding upstream of mexC gene.

(D) Mutation in nfxB lead affects repressor binding leading to expression of MexCD-OprJ efflux system. Expression of MexCD-OprJ efflux system resulted in

increased abundance of MexC protein leading to collateral sensitivity and resistance.
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Figure S5. Phenotypic Convergences for Heterogeneous P. aeruginosa Population during Antibiotic Treatment, Related to Figure 5

(A–F) Distribution plots for susceptibility profiles of clinical isolates toward six clinically relevant antibiotics.

(G) PCA plot for antibiotic susceptibility of clinical isolates obtained before (t1), during (t2) and at the end (t3) of intensive antibiotic treatment of CF patient.

(H) PCA plot for quinolone resistant strains before (t1-b) and at the end of intensive antibiotic treatment (t3) for CF patient. For all panels, normalized MIC values

were used as data input. MIC or the inhibitory concentration was defined as the lowest concentration of the drug that inhibited 90% of the growth of the strain

tested. For each strain, five replicates were performed to determine the drug susceptibility. All MIC data were normalized to EUCAST resistant breakpoint values

and log2 transformed.
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