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SUMMARY

Signaling networks are nonlinear and complex,
involving a large ensemble of dynamic interaction
states that fluctuate in space and time. However,
therapeutic strategies, such as combination chemo-
therapy, rarely consider the timing of drug perturba-
tions. If we are to advance drug discovery for
complex diseases, it will be essential to develop
methods capable of identifying dynamic cellular
responses to clinically relevant perturbations. Here,
we present a Bayesian dose-response framework
and the screening of an oncological drug matrix,
comprising 10,000 drug combinations in melanoma
and pancreatic cancer cell lines, from which we
predict sequentially effective drug combinations.
Approximately 23% of the tested combinations
showed high-confidence sequential effects (either
synergistic or antagonistic), demonstrating that
cellular perturbations of many drug combinations
have temporal aspects, which are currently both
underutilized and poorly understood.

INTRODUCTION

Combination therapies naturally extend the possible cellular per-

turbations that can be applied as treatment for diseased cells. It

is known that the coordination of multiple drugs acting synergis-

tically can improve therapeutic specificity (Lehár et al., 2009)

and, for cancer, can increase the effectiveness of chemotherapy

(DeVita et al., 1975; Chabner and Roberts, 2005). Thus, it is

becoming increasingly evident that more complex treatment

strategies will be required in order to remedy complex diseases

and, in particular, to improve patient specificity.

Recently, several studies have reported time dependency of

drug combinations—also known as schedule dependency,

time staggering, sequence dependency, or simply sequential

treatment. For example, erlotinib treatment in triple-negative

breast cancer models has been shown to rewire an apoptosis-

related signaling network, introducing a vulnerability to DNA

damage by doxorubicin (Lee et al., 2012). In addition to time-

dependent synergy, it has been shown that transient chemore-

sistance in breast cancer cells can be overcome by sequential

treatment with taxanes followed by SFK/Hck inhibition (Goldman

et al., 2015). Concurrent with these observations, nanoparticle

delivery systems have been developed that provide the practical

means for delivering small-molecule perturbations sequentially

(Sengupta et al., 2005; Morton et al., 2014). Altogether, these

provide compelling examples of how cellular dynamics can be

exploited to increase cancer specificity, understand drug mech-

anisms, and overcome drug resistance.

Prior experiments assessing time dependency of anti-cancer

drug combinations have typically been restricted to a small

subset of drugs, timings, and cancer types. While hypothesis

and candidate approaches can be useful systematic, high-

throughput screening strategies provide a complimentary and

unbiased approach for identifying combinatorial candidates

(Al-Lazikani et al., 2012). To this end, we report a systematic

cell-imaging screen and global Bayesian analysis of 10,000

sequential combinations of 100 United States Food and Drug

Administration (FDA)-approved anti-cancer therapies in two

cancer cell lines of melanoma and pancreatic origin. To assess

cell-line specificity, we tested a subset of combinations in 4 addi-

tional pancreatic cancer cell lines. This represents the largest

such screen to date, providing a collection of candidate combi-

nations, along with experimental and analytical precedents for

carrying out similar screens in other contexts.

RESULTS

Quantification of Cell Number following Treatment with
Sequential Drug Combinations
Time-dependent synergy or antagonism can be viewed as

sequential manipulations of cellular attractor states (Figure 1A).

By measuring changes in cell number, we aimed to identify

sequential drug combinations eliciting cytotoxic or proliferative
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states, which could inform about the dynamics of drug interac-

tions, while providing candidates for time-dependent combina-

torial treatment strategies.

A375 (malignant melanoma) and PANC1 (pancreatic adeno-

carcinoma) cells were treated with the 100 drugs that constitute

the Approved Oncology Drug Set IV (Developmental Therapeu-

tics Program, National Cancer Institute). Cells were exposed to

single drugs in an 8-point dose-response curve. In separate

experiments, cells were also exposed to sequential drug combi-

nations where the first drug (a) was given at a single dose and the

second drug (b) was given 24 hr later in a 4-point dose-response

curve. Cell nuclei were then stained with Hoechst 33342 and

imaged on the PerkinElmer Opera High-Content Screening Sys-

tem. Nuclei were quantified using the Acapella image analysis

software (Figure 1B). Thus, for each of the 10,000 possible

drug combinations, nuclei counts were measured after single-

drug exposure (a0, aa, b0, and bb) and sequential combination

in both orders (ab and ba) (Figure 1C). While simultaneous treat-

ments were not directly measured, and thus cannot be defini-

tively excluded, it is likely that order-specific observations

(ab versus ba) have some time dependency. All measurements

were performed in triplicate, generating, in total, approximately

250,000 data points. These data represent an initial sparse

screen, fromwhich we selected 193 combinations with high syn-

ergy for validation experiments.

Global Bayesian Model of Pretreated Dose-Response
Curves
To detect sequential effects of drug combinations, we took a

global, probabilistic approach for modeling dose-response

curves. First, the effects of sequential drug treatments were

assumed to be Bliss independent (Al-Lazikani et al., 2012; Fouc-

quier and Guedj, 2015), with a residual effect from the first drug,

capturing delays in the effect on nuclei numbers (Figure 2A). This

amounted to a 3-factor model capable of modeling both the sin-

gle and combinatorial experiments. We then introduced the pos-

sibility for the combinatorial response curves of the second drug

to deviate from the baseline response, which we used to define a

synergy measure (Figure 1B). In total, the model consisted of

45,000 parameters, where inferential dependencies can be ex-

pressed as a Bayesian network (Figure S1A). We also assumed

prior distributions for all parameters, which improved fitting

convergence while avoiding overfitting. Finally, we modeled

probability distributions over all parameters given both single

and combinatorial drug experiments using Bayes’s theorem.

Posterior probability distributions of the parameters were

fitted using a Metropolis-Hastings algorithm—a Markov chain

Monte Carlo (MCMC) method, which was run for 500,000 itera-

tions with a burn-in period of 100,000 iterations and a 1/200 sam-

ple rate. Hence, each parameter fit consisted of 2,000 samples

representing the uncertainty and posterior probabilities given

all relevant nuclei count data. An example fit showing convergent

parameter estimates is shown in Figure S1B. Based on this, we

defined a ‘‘synergy measure’’ representing the average differ-

ence between the baseline and effective dose-response curve,

where positive values indicated a synergistic interaction be-

tween drugs, and negative values indicated an antagonistic

interaction (Figure 2B). The global nature and integrative struc-

ture of the model facilitated the testing of multiple hypotheses

simultaneously. As such, each of the 10,100 dose-response

curves could be viewed in the context of a subset of relevant

data and parameters. This facilitated the drawing of cross-infer-

ences, handled automatically through Bayesian inference. For

example, Figure 2C illustrates the average posterior fits following

A B

C

Figure 1. Systematic Screening of Sequential

Combinations of Anticancer Drugs to Identify

Temporal Synergy

(A) Schematic illustration of temporal synergy where

changes in cell number can be induced by sequential

treatment with drug a followed by drug b. Sequentially

effective combinations could be time-dependent

or reflect the dynamics of classical simultaneous

synergy.

(B) Cytotoxicity measured by high-content imaging

and quantified using a global synergy model,

which prioritized additional validation experiments

for 200 drug combinations. Cells, in 384-well

plates, were treated with drug a for 24 hr and

then treated with drug b for 24 hr at 4 doses.

Common mechanisms explaining sequential synergy

and antagonism across multiple drugs were then

investigated.

(C) Experimental conditions for systematic screening

of sequential combinations between 100 drugs,

including timing and concentration series for 3

distinct types of experiments: drug a alone, in 8-point

dose response, where cells were assayed after

24 hr; drug a0, where cells were treated with

drug for 24 hr at 1 dose, and then the drug

was removed and cells were assayed after 48 hr;

and drug ab, where cells were treated with 1 dose of drug a for 24 hr and then drug b in 4-point dose response (5-point dose response in the

validation screen). All experiments were performed in triplicate, generating a total of �250,000 data points.
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treatment of A375 cells with lomustine alone and amifostine fol-

lowed by lomustine. The model utilized a combination of data

from single-drug and combinatorial treatments to fit the baseline

dose-response curves. In this way, the inherent biological and

technical variations inherent in the assay were taken into

account, resulting in more conservative estimates of sequential

effects; in this case, that amifostine pretreatment was synergistic

with lomustine.

Sequential Effects Are Mostly Time-Dependent and
Cell-Line-Specific
The global dose-response model identified 1,258 synergistic

drug combinations (p < 0.05; 551 in PANC1 and 707 in A375)

and 3,309 antagonistic combinations (p < 0.05; 1,464 in

PANC1 and 1,845 in A375); in total, approximately 23% of all

combinations tested (Figures 2D and S2). The temporal synergy

measures of PANC1 and A375 were weakly correlated (r = 0.19,

Pearson’s correlation), with the majority of the correlation

observed in the antagonistic domain. This is, perhaps, unsurpris-

ing given the different origins of the two cell lines tested.

To better assess the cell-line specificity of the sequential

effects, we screened a subset of 193 drug combinations in

four pancreatic cancer cell lines: AsPC-1, BXPC3, Capan1,

and DAN-G (Figures S3A and S3B). The majority of the concor-

dant drug interactions were, again, found in the antagonistic

domain; overall, the correlations with PANC1 were higher

than for the melanoma cell line, ranging from r = 0.50 to

r = 0.67 (Pearson’s correlation; Figure S3C). While PANC1

was more correlated to the other pancreatic cancer cell lines

than it was to A375, Capan1 and AsPC-1 were even more

highly correlated (r = 0.74), as were DAN-G and BXPC3

(r = 0.81). There does not appear to be an obvious genomic

explanation for these observations; however, DAN-G and

BXPC3 had similar growth characteristics in this screen, prolif-

erating significantly faster than Capan-1 and AsPC-1 (doubling

times of 1 to 1.5 days for DAN-G and BXPC3 versus 2 to

3 days for Capan-1 and AsPC-1). These observations suggest

that cell lines broadly respond differently to sequential treat-

ment, yet some drug-driven network state changes may be

conserved between cells of similar phenotype. Further investi-

gations in more, well-characterized cell lines would be required

to determine whether this observation has clinical relevance,

yet it may suggest a potential role for patient-derived xeno-

graph models in order to identify patient-specific temporal

combinations.

We also compared reversed treatments in each cell line

(e.g., ab versus ba) in order to discern whether the identified

sequential effects were time-dependent. For all reversed
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Figure 2. Global Bayesian Model of Cell Viability Data

(A) Global Bayesian model of cell viability data. In total, the model consisted of 45,000 parameters, over which posterior probability distributions were fitted using

a Metropolis-Hastings algorithm, assuming sigmoidal dose-response curves and Bliss independence between consecutive treatments. Prior distributions over

all parameters were assumed. Each observation of type a, a0, and ab carried equal weight in the Bayesian inference.

(B) Special selector variables (l) were used to enable the ab data to influence the baseline fit for a more conservative estimate of sequential effects. Synergy was

quantified as the difference between the expected baseline and the model fit, with antagonism associated with negative values of this measure.

(C) Example of validated model fit in A375. Left: conservative fit of baseline dose-response curve for lomustine based on average posterior parameters from

supporting data points, including controls (experiment types b and b0) in addition to all combinatorial experiments (ab) that involved lomustine. To illustrate their

influence on the baseline fit, each point was scaled by effects from residuals and non-lomustine drugs according to the 3-factor Bliss independencemodel. Right:

average fitted dose-response curve for lomustine pretreated with amifostine, showing a synergistic sequential effect, p < 0.0005.

(D) Distribution of the posterior MCMC frequencies of selector variables for all 10,000 sequential combinations estimating the likelihood of drug interaction and

whether the interaction was synergistic or antagonistic. These ‘‘l scores’’ were multiplied by �1 for antagonistic combinations yielding a range of [�1, 1],

where �1 corresponds to the most antagonistic combination and +1 corresponds to the most synergistic combination.
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combinations, synergy measures were only weakly correlated

for both A375 (r = 0.25) and PANC1 (r = 0.23), concordant with

widespread time dependency of sequential drug combinations.

Iterative Model Improvement and Validation Increase
the Discovery Rate
Model-based experimentation is known to increase the search

efficiency for combinatorial treatments; by first performing a

sparse screen and then conducting additional experiments in

selected regions, positive results are more likely to be found

(Creixell et al., 2012; Janes and Yaffe, 2006). Accordingly, based

on preliminary model predictions of highly synergistic and antag-

onistic drug combinations, we carried out validation experiments

for 192 drug combinations in each cell line where the first drug

was given at a single dose and the second drug was given

24 hr later in 5-point dose response. Overall, we found the model

predictions to be reproducible (Figure S4A), even though the

selected top combinations represent a worst-case validation,

with any experimental outliers having a disproportional effect

on the model fit. These validation results were used to further

refine the model so that the updated synergy measures, pre-

sented throughout this study, take into account both the primary

screen and validation data.

Drug Mechanisms Predict Temporal Synergy and
Antagonism
Clustering the first and second drugs by their synergy measures

identified clusters of synergy and antagonism (Figure 3A)

that associated with broad classes of drug mechanisms

collated from DrugBank (Law et al., 2014). Most prominently,
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Figure 3. Sequential Synergism and Antag-

onism among Anticancer Drugs Are Com-

mon in A375 and PANC1 Cell Lines

(A) Heatmaps of average posterior synergy mea-

sures (difference from baseline) for all 10,000

sequential combinations tested in PANC1 and

A375, where blue indicates strong antagonism

and red indicates strong synergy. Rows and col-

umns correspond to first and second drugs, are

arranged by hierarchical clustering, and are

colored by classes of drug mechanisms.

(B) Average synergy measure by drug mechanism

showing, in both cell lines, increased synergy

following secondary treatment with alkylating

agents and strong antagonism following second-

ary treatment with tubulin modulators. Signifi-

cance was assessed by permutation tests.

antagonistic drug clusters associated

with secondary tubulin modulator treat-

ment (Figures 3B). This time-dependent

antagonistic interaction between tubulin

modulators and other drugs has been

previously reported (Vanhoefer et al.,

1995; Xiong et al., 2007) and suggested

to be cell-cycle-dependent. In addition,

we found a synergistic tendency for sec-

ondary treatment with alkylating drugs

(Figure 3B), which corroborates previous findings of induced

sensitivity to DNA damage (Lee et al., 2012).

In addition to drug mechanisms, we investigated whether syn-

ergy measures clustered by protein targets (Kuhn et al., 2014)

and National Cancer Institute pathway associations (Schaefer

et al., 2009). Drug combinations with shared targets (Law

et al., 2014) were more likely to be antagonistic (Figure S4B),

indicating that using drug target overlap to propose novel

sequential combinations in silico (Zhao et al., 2011) may be

prone to adaptive cellular responses. In cross-validated predic-

tions of synergy measures, drug mechanism was consistently

the most predictive, with the inclusion of protein targets and

pathways further increasing predictive power (Figure 4A). By

including all model components that improved cross-validation

performance (Figure 4A), regression coefficients were used to

dissect molecular mechanisms underlying sequential synergy

and antagonism in terms of protein targets, pathways, and

mechanisms (Figure 4B).

These observations suggest that drug annotations of combi-

natorial treatments are predictive of sequential synergy and

antagonism. This may, in turn, indicate that drugs inducing

similar states possibly reflect shared dynamic mechanisms. It

should, thus, be expected that functional efforts to better char-

acterize the dynamics of drug perturbations would enable

more precise models of sequential treatments.

DISCUSSION

The systematic screen and global statistical model described

here effectively identified synergistic, time-dependent temporal
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Figure 4. Regression-Based Interpretation of

Schedule-Dependent Synergy in Terms of Drug Mech-

anisms, Protein Targets, and Associated Molecular

Pathways

(A) Cross-validation error of classes of regression models for

the first (a) and second (b) drugs, illustrating that drug protein

targets and/or pathway activity did not significantly improve

predictive power over mechanism alone. However, some

particular meta-features, such as the protein target of the

pretreatment combined with the mechanism of the secondary

treatment, did increase predictive power. The line represents

the greedy conjunction of the best performing models added

one at a time in the order of their individual cross-validation

performance. All fits were controlled for overfitting by using the

hyperparameter value yielding the lowest 10-fold cross-vali-

dation error.

(B) Mean synergy measures quantified by repression co-

efficients illustrating synergistic and antagonistic effects from

individual drugs and drugs grouped according to their

described mechanism, as either the first (a) or the second (b)

treatment.
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treatments in cancer cell lines. Factors contributing to this effi-

ciency include the use of Bayesian statistics and a strategy of

sparse systematic experimentation followed by model-based

follow-up experiments and validation. To our knowledge, it has

not previously been shown that a global probabilistic model for

drug combinations would be a practical analysis scheme.

Hence, that such a model was algorithmically feasible was a

remarkable result in itself.

Alternative methods for quantifying drug synergy, such as the

Chou-Talalay Combination Index (Chou and Talalay, 1984), as-

sume dose equivalence, which is invalid when drugs are not

administered simultaneously. In contrast, the sequential Bliss in-

dependence model used here does not assume dose equiva-

lence but allows for self-synergy and antagonism, the meaning

of which is related to sustained drug treatment but not strictly

a combinatorial synergy or antagonism. For these reasons, clas-

sical theory of synergism must be handled carefully for sequen-

tial treatment.

Using this model, we have identified several time-dependent

combinations that could potentially have clinical relevance. The

finding that amifostine pretreatment is synergistic with lomustine

was noteworthy, since amifostine was originally designed as a

cytoprotectant, reducing kidney damage from cisplatin (Kouva-

ris et al., 2007). However, it has now been shown that amifostine

has a complex mechanism of action that can mimic hypoxia and

promote vascular endothelial growth factor expression (Dedieu

et al., 2010). It is, therefore, not surprising that it could, in a

time-dependent manner, promote the efficacy of other drugs in

some cellular contexts.

Clinical trials have shown improved survival in patients with

pancreatic cancer following treatment with gemcitabine and

cisplatin (Ouyang et al., 2016), a well-established synergistic

combination (Bergman et al., 1996), and gemcitabine and cape-

citabine (Neoptolemos et al., 2016), combinations that were both

found to be synergistic in this study. In the case of gemcitabine

and cisplatin, we found equal synergy regardless of treatment

order (gemcitabine then cisplatin: l = 0.724; and cisplatin then

gemcitabine: l = 0.805) and self-synergy for cisplatin alone

(l = 0.735). In contrast, gemcitabine was found to be highly

self-antagonistic (l = �1). For the combination of gemcitabine

and capecitabine, synergy was only observedwhen gemcitabine

was administered first (l = 0.69). These examples illustrate cases

of classical synergy with and without time dependency of

sequential application. Recently, sequential application of gem-

citabine, followed by erlotinib 18–24 hr later, has been shown to

be efficacious in in vitro models of pancreatic cancer (Ubezio

et al., 2016). Our study supports this finding, with gemcitabine

followed by erlotinib found to be highly synergistic in PANC1

cells (l = 0.996). While gemcitabine and erlotinib combination

therapies have shown some efficacy in the clinic (Moore et al.,

2007), the effect of sequential applications of these drugs is

yet to be determined.

For malignant melanoma, combinations of bortezomib and ve-

murafenib have previously been reported to be synergistic in a

panel of 7melanoma cell lines (Bolomsky et al., 2013). Our model

validated this synergistic effect, but only when bortezomib was

given first (l = 0.926). If vemurafenib was given first, the combi-

nation was, instead, highly antagonistic (l =�1), as was bortezo-

mib alone (l = �1). Interestingly, we also noted a synergistic

effect from combinations of erlotinib and vemurafenib, if erlotinib

was given first (l = 0.725). It is well known that vemurafenib resis-

tance in colon cancer is driven by feedback activation of the

epidermal growth factor receptor (EGFR) and that combination

therapies of vemurafenib and erlotinib are, thus, synergistic in

both in vitro and in vivo models (Prahallad et al., 2012). Mela-

noma cells, however, usually express low levels of EGFR, but

this is not the case for A375, which has relatively high EGFR

expression (Mirmohammadsadegh et al., 2007), and a subset

of human tumors (Sun et al., 2014). Therefore, the dynamics of

EGFR inhibition by erlotinib in A375 might explain the sensitiza-

tion to subsequent treatment with vemurafenib in this study.

Temporal order is rarely considered when designing clinical

trials and optimal treatment schedules for combination thera-

pies, yet the results presented here, and in other more focused

studies, clearly show that sequential synergy and antagonism

are common and highly time-dependent among approved anti-

cancer therapies. It is, thus, becoming increasingly clear that

time-dependent synergy is a crucial consideration to maximize

efficacy and that time-dependent antagonism could be particu-

larly important to avoid resistance.

Our understanding of adaptation, compensation, and network

rewiring is currently insufficient to allow accurate ab initio predic-

tions of the cellular response in any cell type. However, once we

unravel how cells rewire and reach new network states, it will be

feasible to attempt to force tumor cells out of these states in

order to kill or ‘‘normalize’’ them through drug-induced dynamic

rewiring of signaling networks.

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in the

Supplemental Experimental Procedures.

Dose-Response Parameterization and Priors

Individual cell viabilities were modeled according to classical sigmoidal drug-

response curves, where a parameter, K, represents the inverse of half of the

maximal inhibitory concentration (IC50), h determines slope, and a represents

the maximum effect on cell viability. The global model consisted of dose-

response curve parameters for each of the 100 small-molecule compounds

and for each of the 10,000 sequential combinations. Cell growth was assumed

to be a discrete two-step process with residual effect from the first treatment

during the second treatment. Assuming Bliss independence, the baseline

response was, thus, considered a product of 3 factors: the viability effects of

the first and second drugs and the residual effect of the first drug. Selector vari-

ables were defined as Boolean variables, which determined whether the

combinatorial effect is explained by the single-drug parameters or by a new

set of parameters modeling the synergy or antagonism.

The precision of the cell counts (variance�1) was assumed to follow a

Gamma distribution. Hence, the sufficient statistics—namely, the experi-

mental mean and variance of normalized cell counts across experimental

repeats—were used to fit themodel parameters. For the global Bayesian curve

fit, we assumed the following prior probability distributions: K, �log N(0.1,

0.2); h, �log N(1.5, 2.0); a, �beta(1, 3); ε, �gamma(0.6, 0.02), where ε is the

cell-count precision. All concentration-specific parameters were expressed

in micromolar amounts.

Estimation of Posterior Distribution

To evaluate the posterior density of the model parameters given the observed

data, we simulated a chain of complete parameter sets according to a modi-

fied Metropolis-Hastings algorithm. We used a modified Gibbs sampling
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procedure for proposal distribution, where, at each iteration, proposals were

made independently for curve parameter sets and the associated selector

variable. For calculating the Metropolis-Hastings acceptance ratios, we

considered proposals of 4 cases based on the previous and proposed selector

variables. This simplified the proposal correction for the Metropolis-Hastings

acceptance ratios under particular choices of proposal distributions, enabling

a scheme where curve parameters were only explored if a selector variable

remains on.

For the parameters K, h, and a, we used Gaussian proposal distributions,

with reject for negative outcomes and SDs 2.0, 0.5, and 3.0, respectively.

For each curve parameter set, the selector variable was drawn from a Bernoulli

distribution with 0.1 probability of switching state. If the selector variable

remained on, then 1 out of 3 parameters was chosen randomly for proposal

as described. The MCMC simulation was implemented in C++11 using

the < random > library for sampling numbers following the described probabil-

ity distributions. At every 200th iteration of parameters, sets were sampled af-

ter a burn-in period of 100,000 and for a total of 500,000 iterations. Finally, an

aggregate synergy measure was evaluated as the average area between the

baseline and combined dose-response curves along with l, defined as the

average value of the selector variable for each drug combination.

Data and Software Availability

The source code for the program fitting sequential, combinatorial dose-

response curves through MCMC samples from the posterior distribution is

available at the following URL, under a GNU General Public License Version 3:

https://github.com/skoplev/d-chain.

Additional documentation can be found at https://dchain.lindinglab.org.

Aggregate model data from the combinatorial and validation screens can be

found at: http://dx.doi.org/10.17632/wgybvcvjwf.1.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2017.08.095.
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and Seeber, S. (1995). Schedule-dependent antagonism of paclitaxel and

cisplatin in human gastric and ovarian carcinoma cell lines in vitro. Eur. J.

Cancer 31A, 92–97.

Xiong, X., Sui, M., Fan, W., and Kraft, A.S. (2007). Cell cycle dependent antag-

onistic interactions between paclitaxel and carboplatin in combination ther-

apy. Cancer Biol. Ther. 6, 1067–1073.

Zhao, X.-M., Iskar, M., Zeller, G., Kuhn, M., van Noort, V., and Bork, P. (2011).

Prediction of drug combinations by integratingmolecular and pharmacological

data. PLoS Comput. Biol. 7, e1002323.

Cell Reports 20, 2784–2791, September 19, 2017 2791




