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Abstract
The gut microbiota has been established as an important player influencing many aspects of human physiology. Breast milk, the first diet for an
infant, contains human milk oligosaccharides (HMO) that shape the infant’s gut microbiota by selectively stimulating the growth of specific
bacteria, especially bifidobacteria. In addition to their bifidogenic activity, the ability of HMO to modulate immune function and the gut barrier
makes them prime candidates to restore a beneficial microbiota in dysbiotic adults and provide health benefits. We conducted a parallel, double-
blind, randomised, placebo-controlled, HMO-supplementation study in 100 healthy, adult volunteers, consuming chemically produced
2′-O-fucosyllactose (2′FL) and/or lacto-N-neotetraose (LNnT) at various daily doses and mixes or placebo for 2 weeks. All participants completed
the study without premature discontinuation. Supplementation of 2′FL and LNnT at daily doses up to 20 g was shown to be safe and well tolerated,
as assessed using the gastrointestinal symptoms rating scale. 16S rRNA sequencing analysis showed that HMO supplementation specifically
modified the adult gut microbiota with the primary impact being substantial increases in relative abundance of Actinobacteria and Bifidobacterium
in particular and a reduction in relative abundance of Firmicutes and Proteobacteria. This study provides the first set of data on safety, tolerance
and impact of HMO on the adult gut microbiota. Collectively, the results from this study show that supplementing the diet with HMO is a valuable
strategy to shape the human gut microbiota and specifically promote the growth of beneficial bifidobacteria.
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Intensive research over the past decade has revealed the gut
microbiota to be an important player in host health by influ-
encing many aspects of human physiology, including energy
metabolism(1), hormonal balance(2) and immunity(3,4). The gut
microbiota also contributes to establishment of the mucosal
barrier and maintenance of intestinal homoeostasis(5). The
microbiota of the human intestine is a complex and very
dynamic microbial ecosystem, and extensive research has been
able to link imbalance in the intestinal bacterial population to a
wide variety of both intestinal and extra-intestinal diseases such
as malnutrition, cancer, inflammatory diseases, metabolic
diseases, gastrointestinal (GI) diseases and response to
pathogens(6–14). This research has led to an increasing

appreciation of the gut microbiota as a target for therapeutic
intervention. Indeed, modulation of the gut microbiota has
been shown to be a promising therapeutic approach to treat
recurrent Clostridium difficile infections(15).

Breast milk, the first diet for an infant, offers all the essential
nutrients for growth and development, and provides bioactive
factors such as Ig, antimicrobial proteins and cytokines(16). In
addition, components of breast milk are able to shape the intest-
inal microbiota and drive the maturation of the infant gut. The
major components driving this are the human milk oligosacchar-
ides (HMO), as can be seen when comparing breast-fed with
formula-fed infants, where breast-fed infants carry a more stable
and uniform microbial population than formula-fed infants(17).

Abbreviations: 2′FL, 2′-O-fucosyllactose; GI, gastrointestinal; GSRS, gastrointestinal symptom rating scale; HMO, human milk oligosaccharide; LNnT,
lacto-N-neotetraose; OTU, operational taxonomic units.
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HMO are a family of highly diverse structures of unconjugated
glycans, present in high concentrations in human milk. The
structural diversity they represent can be broadly divided into
fucosylated, sialylated and non-fucosylated neutral structures.
One litre of mother’s milk contains 5–25 g of HMO(18), and
HMO therefore are the third most abundant solid constituent in
human milk. HMO are not digested in the upper GI tract, and
only 1–2% is absorbed in infants(19,20). The majority of ingested
HMO reach the large intestine where they provide selective
substrates for specific gut bacteria(21–27), modulate the immune
system(28–31) and prevent the epithelial adhesion of intestinal
pathogens(32–36).
After weaning, the introduction of solid food profoundly

influences the microbial ecology. In fact, diet is, together with
genetics and environmental factors, one of the main con-
tributors to the diversity of human intestinal microbiota(37).
Dietary manipulation hence represents a strategy to promote a
beneficial GI microbial community and to improve the well-
being of the host.
Selective stimulation of beneficial intestinal bacteria by pro-

moting their growth and metabolic activity may be a helpful
approach in creating a beneficial microbial community. As
some bacteria are able to produce a large set of carbohydrate
active enzymes, including glycoside-hydrolases and transpor-
ters, they can grow on carbon sources, which are unfermented
by other members of the intestinal microbial community. HMO
are probably best known for their prebiotic effects in breast-fed
infants, where they exert a strong bifidogenic effect, char-
acterised by the proliferation of specific strains including
Bifidobacterium infantis, B. breve and B. bifidum(17,38).
Bifidobacteria are generally considered beneficial for human
health because of their ability to digest complex carbohydrates
and dietary fibres. Further, low bifidobacteria abundance has
been linked to GI(39,40) and metabolic diseases(41,42), for
example. As Bifidobacterium is highly abundant in the micro-
biota of breast-fed infants, their acquisition and HMO metabo-
lism have drawn a lot of attention in recent years(43). In vitro
fermentation studies have clearly confirmed the decisive role of
HMO in promoting the growth of bifidobacteria(25). However,
the impact of HMO on the adult intestinal microbiota and adult
GI tract is unknown. We designed a prospective study to assess
the effects of HMO supplementation on the composition of
the adult gut microbiota and on GI symptoms. We selected 2′-
O-fucosyllactose (2′FL) as a fucosylated HMO and lacto-N-
neotetraose (LNnT) as a non-fucosylated neutral HMO. These two
compounds are among the shortest HMO to remain unaltered
after passage through the small intestine and are available for
clinical use. This first human study of HMO supplementation in
adults provided valuable insights into the effect of HMO on the
adult gut microbiota. In addition, the study assessed the safety and
tolerability of HMO supplementation in adults.

Methods

Subjects

Subjects were recruited from the region Zealand in Denmark. In
total, 110 healthy male and female adult volunteers were invited

for screening. From this pool of volunteers, 100 subjects were
randomised to participate in the study. Inclusion criteria were as
follows: aged between 18 and 60 years, ability and willingness
to understand and comply with the study procedures and sign
the written informed consent. Exclusion criteria were as follows:
participation in a clinical study 1 month before the screening
visit and throughout the study, abnormal results of screening
laboratory and clinical tests relevant for study participation, any
GI symptom scoring >3 on the Gastrointestinal Symptom Rating
Scale (GSRS), a mean score on the total GSRS> 2 during the
screening period, any GI and/or other severe diseases, highly
dosed probiotic supplement and/or antibiotic use 3 months
before the study and throughout the study, consumption on a
regular basis of medication that might interfere with symptom
evaluation, pregnancy or seeking pregnancy and nursing.
A summary of the trial design was registered at www.
ClinicalTrials.gov (NCT01927900).

Study products

All carbohydrate compounds were provided as powder in PET
bottles. HMO 2′FL and LNnT were supplied by Glycom A/S as
white, free-flowing, crystalline powders of synthetic origin at
99·9% (2′FL) and 98·9% (LNnT) purity, respectively. The sam-
ples were subjected to preclinical toxicology studies(44,45).
Furthermore, an European Food Safety Authority (EFSA) panel
on Dietetic Products, Nutrition and Allergies (NDA) specifically
assessed 2′FL and LNnT and concluded that these, as produced
by Glycom A/S, are safe to use in foods(46,47). Glucose
(Dextropure; Valora Trade Denmark A/S) was given as placebo.
Subjects were asked to dissolve the contents of the bottles
immediately before consumption by mixing the powder with
water, and were asked to consume the product every day at
breakfast.

Study design

The present study was a parallel, double-blind, randomised,
placebo-controlled, dose-finding study. After a screening visit
and a run-in period of 1–2 weeks, eligible volunteers were
randomly assigned by a computer-generated list to ten groups
of ten participants each, consuming either HMO or placebo
daily for 2 weeks. A constant regimen of 2′FL, LNnT or 2′FL +
LNnT (2:1 mass ratio; mix) at 5, 10 or 20 g per d or 2 g of glucose
as placebo was allocated to each group. The daily doses were
chosen to be within the range of the average daily intake per kg
body weight in infants(46,47). Diet was not controlled, but
subjects were asked not to change their diet over the course of
the study. Subjects had clinical check-ups at entry and at the
end of the intervention. Subjects taking the study product for
≥12 of the 14 d of intervention were considered compliant.

Ethical considerations

This study was conducted according to the guidelines laid
down in the Declaration of Helsinki, and all procedures invol-
ving human subjects were approved by the Ethics Committee in
Region Zealand (registration number SJ-345). The trial was
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registered with the Danish Data Protection authorities via the
regional approval system, and Danish regulations relating to
personal data protection were respected. All subjects were
given oral and written information about the purpose and
procedures of the study. Consent to participate was signed by
the subjects before the study started, and the subjects were free
to withdraw from the study at any time point without giving any
explanation.

Gastrointestinal symptoms and stool consistency

To evaluate the influence on GI symptoms, participants com-
pleted a self-administered GSRS form, once at screening, once
at entry and once at end of the intervention period. The GSRS
form includes fifteen items covering five dimensions: abdominal
pain, indigestion, reflux, diarrhoea and constipation(48). The
participants rated severity using a seven-point Likert scale
running from (1) no discomfort to (7) very severe discomfort.
Bowel movement frequency was recorded daily, and stool
consistency was evaluated using the Bristol Stool Form Scale
(BSFS)(49). The BSFS was filled in on a daily basis during the
study period, from screening to the end of the intervention.
Adverse events, defined as any untoward medical occurrence,
including those that did not necessarily have a causal relation-
ship with the investigational or placebo products, were reported
from intake of the first dose and throughout the intervention
period.

Blood analysis

Blood samples for routine clinical chemistry and haematology
analyses were collected at screening and at the end of the
intervention to assess the safety of study product intake.
Samples were analysed for Hb, erythrocytes, haematocrit,
leucocytes, thrombocytes, creatinine, Na, K, alanine amino-
transferase, alkaline phosphatases, coagulation factor II, VII and
X, bilirubin, albumin, C-reactive protein and glucose. Blood
samples for the analysis of additional biomarkers were collected
at study entry and at the end of the intervention. These samples
were analysed for HbA1c, apoA1, apoB, transferrin, progester-
one, cortisol, oestradiol, IL-10, IL-6, TNF-α, blood urea nitrogen,
Fe, TAG, HDL-cholesterol, LDL-cholesterol, total free fatty acids,
insulin, lysozyme, testosterone and glucagon (Unilabs A/S).

Faecal biomarkers

Faecal samples for biomarker analysis were collected just
before study entry and at the end of the intervention. ELISA was
applied to determine calprotectin (Bühlmann Laboratories) and
secretory IgA levels (Bethyl Laboratories). SCFA were analysed
as described previously(32). In brief, faecal samples were solu-
bilised in 5 volumes of water, spiked with 10mM-succinic acid
and extracted twice in diethylether for 20min at room tem-
perature. The final supernatants were passed through a 0·45-μm
filter and analysed by HPLC. The HPLC system (Lachrom L7100;
Merck-Hitachi) included a HPX-87H Aminex column
(300× 7·8mm, from BioRad) and guard column of the same
type. Chromatography was performed at 30°C isocratically in

10-mM-H2SO4, which was the mobile phase, at a flow rate of
0·4ml/min. SCFA were detected at 210 nm in a UV detector, and
concentrations calculated from the peak areas were compared
with authentic standards.

Faecal DNA preparation

Faecal microbiota composition was analysed using four faecal
samples per subject, with approximately 1 week between each
sampling. Samples 1 and 2 were collected before intervention
start, and samples 3 and 4 were collected during the interven-
tion. For the analysis, the average of samples 1 and 2 was used
as the baseline value and the average of samples 3 and 4 was
for the intervention. The faecal samples were collected by the
participants, and immediately stored in a freezer (about −20°C).
When delivered to the hospital (in cooling kits), samples were
stored at −80°C until analysis. DNA was extracted using the
ninety-six-well PowerSoil DNA Isolation Kit (MO-BIO).

16S rRNA sequencing

The V3–V4 region of the 16S rDNA was amplified using the
forward primer S-D-Bact-0341-b-S-17 (5′-TCGTCGGCAGCG
TCAGATGTGTATAAGAGACAG-3′) and the reverse primer
S-D-Bact-0785-a-A-21 (5′-GTCTCGTGGGCTCGGAGATGTG
TATAAGAGACAG-3′)(50), with Illumina adapters attached. The
following PCR programme was used: 98°C for 30 s, 25× (98°C
for 10 s, 55°C for 20 s, 72°C for 20 s) and 72°C for 5min; Nextera
Index Kit V2 (Illumina) indices were added in an identical PCR
with only eight cycles. Products from the PCR reactions were
cleaned using the SequalPrep Normalization Plate Kit (Invitro-
gen) or Agencourt AMPure XP PCR purification kit (Beckman
Coulter) and pooled. Sequencing was carried out on an Illumina
MiSeq sequencer using the MiSeq Reagent Kit V3 (Illumina) for
2× 300-bp paired-end sequencing.

Bioinformatical analysis

The paired-end reads were merged, and low-quality sequences
were discarded (truncating reads at a quality score of 4 or less
and requiring 100-bp overlap between paired reads, perfect
match to primers, a merged sequence length of 300–600 bp, a
maximum of five expected errors and a minimum of 5 identical
sequences in the data set). Sequences were clustered into
operational taxonomic units (OTU) at 97% sequence similarity
using USEARCH(51), and suspected chimeric sequences were
discarded on the basis of UCHIME(52). Taxonomic assignment
of OTU was performed on the basis of comparison with a
database of curated sequences derived from the Ribosomal
Database Project(53). Samples were rarified to the lowest
sequence number found in a sample (11 568 sequences). Both
negative controls and mock communities were included in the
analysis as quality controls.

Statistical analysis

All participants completed the study as per protocol, and were
included in the statistical analysis. Differences in GSRS scores,
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BSFS scores, biomarker and clinical chemistry, and haemato-
logy were analysed.
Analysis of difference between baseline and end of inter-

vention in the microbiota profile, within each intervention
group, was performed using the Mann–Whitney U tests using
Bonferroni’s correction for multiple hypothesis testing.
Generalised UniFrac distances(54) between samples were

calculated at α= 0·5 and with phyla abundance overlaid on
the plots.
Change in sequence abundance (delta (end − entry)) was

calculated, and a one-way ANOVA with Fisher’s LSD as post hoc
test was used to compare the statistical difference in the change
in Actinobacteria and bifidobacteria, and the three most
dominant OTU identified within the Bifidobacterium genus
comparing placebo with each intervention group. Difference
in SCFA concentration at entry and end of intervention was
analysed using a two-way repeated measures ANOVA.
Non-parametric tests were used when data were not normally
distributed as tested using the Shapiro–Wilk normality test.
Multiple comparisons using Pearson’s correlation coefficient
were calculated for SCFA and bifidobacteria, testing separately
the groups taking 5, 10 or 20 g of HMO using Prism 6 (Graph-
Pad Prism, version 6.05). In all cases, statistically significant
differences were established at P< 0·05.

Results

Safety and tolerance of 2′-O-fucosyllactose and
lacto-N-neotetraose supplementation

In total, 100 healthy, adult volunteers (forty-nine females and
fifty-one males) aged 19–57 years were enrolled in the study.
Demographic parameters such as age, sex and BMI did not
differ between groups at entry (Table 1). All subjects were
examined physically at screening and at end of intervention. No
change in clinical significance in any physical parameter
including pulse rate and blood pressure was found during the
2-week intervention. To further assess the safety of HMO sup-
plementation, blood samples were collected before and after
intervention for routine clinical chemistry and haematology
analyses. These analyses revealed no irregularities considered
due to the intake of study products in any intervention group
(online Supplementary Table S1), thus confirming the safety of
the tested compounds.

Compliance was defined as ingestion of the study product for
≥12 days during the intervention period. All subjects were
compliant and completed the study according to the protocol
without any dropouts (Fig. 1). A total of fifty-six adverse events
were reported by forty-four subjects. All were judged as ‘mild’,
and all subjects tolerated the investigational products through-
out the trial period. Adverse events were usually reported as a
complex of multiple symptoms such as flatulence, bloating and
constipation, and were primarily reported at the end of the
2-week intervention. Most adverse events were reported by
subjects taking the highest doses of 2′FL and LNnT. Gas/
flatulence was the most common adverse event reported,
followed by stomach pain, diarrhoea/loose stools and rumbling,
but at lower frequencies.

GI symptoms were assessed before, during and at the end of
the intervention using a self-administered GSRS questionnaire
covering symptoms related to abdominal pain, indigestion,
reflux, diarrhoea and constipation. The GSRS scores were low at
baseline, reflecting exclusion criteria, and remained low after
intervention. Compared with baseline, the changes in GSRS
scores within an intervention group were generally not sig-
nificant, with a few exceptions: volunteers taking the high 20-g
dose of 2′FL and LNnT reported increased bloating and passing
of gas. Those receiving 20 g of 2′FL further reported increased
rumbling, whereas those on 20 g of LNnT reported harder
stools. Increases in passing gas were also reported by those
receiving 10 g of LNnT. Compared with placebo, most of the
changes in GSRS scores were insignificant, again with the
exception of the intervention group receiving the highest dose
of 2′FL, who reported increased nausea, rumbling, bloating,
passing of gas, diarrhoea, loose stools and urgency to pass
stools, and the groups receiving the high 20-g dose and inter-
mediate 10-g dose of LNnT, who reported increased passing of
gas after 2 weeks of intervention (Fig. 2). Despite statistical
significance, mean scores remained low (mean score< 3; mild
discomfort or below). No significant changes in GSRS were
found in subjects receiving the highest dose of the mix.

Generally, the interventions had a minor impact on stool
frequency and consistency (Table 2). The average number of
daily bowel movements was significantly increased at the end
of the intervention in groups taking 20 g of 2′FL, 20 g of LNnT
and 5 g of LNnT compared with baseline; however, the differ-
ences were small (an extra 0·3 bowel movement/d) and
deemed clinically irrelevant. When comparing the intervention

Table 1. Participant demographics at entry
(Mean values and standard deviations; means and ranges)

2′FL LNnT Mix

20 g 10g 5 g 20g 10 g 5g 20 g 10 g 5 g Placebo

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

BMI (kg/m2) 27·8 7·4 24·7 1·9 25·8 4·2 24·9 4·9 25·0 5·5 24·8 4·4 22·4 1·8 26·5 3·8 24·8 3·6 26·8 6·3
Age (years)

Mean 39·9 33·4 38·3 39·0 34·8 34·6 29·3 37·1 38·9 34·9
Range 25–55 21–51 27–52 22–57 23–51 26–47 19–45 19–56 23–53 25–47

Males/females 4/6 5/5 4/6 4/6 4/6 9/1 8/2 4/6 6/4 3/7

2′FL, 2′-O-fucosyllactose; LNnT, lacto-N-neotetraose; Mix, 2′FL:LNnT (2:1).
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groups with the placebo, no significant difference in bowel
movement was observed. Subjects taking the high 20-g dose of
2′FL or LNnT reported significantly higher BSFS scores (indi-
cating softer stools), after the intervention compared with
baseline. However, the differences were small (<0·5 points
increase). In addition, a number of blood and faecal biomarkers
were measured, and safety of the HMO supplementation was
confirmed at the level of clinical chemistry and haematology. All
parameters measured remained within the normal range
throughout the intervention. Although a few differences were
statistically significant (online Supplementary Table S1), they
were not considered to be clinically relevant. Taken together,
these data demonstrated that dietary supplementation with high
doses of 2′FL and LNnT is safe and well tolerated and resulted
in 100% compliance.

Microbiota profiling and bacterial metabolites

Sequencing of the 16S rRNA V3–V4 regions yielded 123 283 020
paired-end reads, which resulted in 19 718714 sequences after
quality filtration and chimera removal distributed over 400 sam-
ples. Taxonomic assignment of OTU was done, and after this
samples were rarified to the lowest sequence number found in a
sample, which was 11 568 sequences. The two samples collected
before the intervention were counted as one group, assigned
before. The two samples collected at 1 and 2 weeks after inter-
vention were also counted as one group, assigned after.

Before the intervention, a plot of the UniFrac distances
showed no easily discernible pattern to discriminate between
the different intervention groups (Fig. 3(a)). However, after the
intervention (Fig. 3(b)), the groups receiving HMO appeared to
be differentiated from placebo based on the abundance of
Actinobacteria, with the intervention groups receiving higher
doses of HMO having greater sequence abundance of Actino-
bacteria (Fig. 3). Compared with baseline, the increase in the
relative abundance of Actinobacteria was statistically significant
for all groups taking LNnT, the high 20-g dose and the inter-
mediate 10-g dose of the mix and for the groups taking the
low 5-g dose and the intermediate 10-g dose of 2′FL (Fig. 4).
Surprisingly, this effect was not observed in those taking the
high dose of 2′FL. The increase in Actinobacteria sequence
abundance was dose dependent, especially when excluding
20 g 2′FL: a multiple linear regression using data from all but
this treatment group found that there was a significant
positive correlation between the concentration of the two HMO
and the increase in Actinobacteria (P< 0·05, R2= 28%) with
LNnT and 2′FL having similar coefficients (0·008 and 0·011,
respectively).

HMO supplementation also affected other phyla such as
Firmicutes, which decreased after the high dose of LNnT and
the mix, and Proteobacteria, which decreased after the inter-
mediate dose of 2′FL (Fig. 4). The HMO intervention led to
reduced relative abundance of Firmicutes and Proteobacteria.
This phylum includes pathobionts such as Enterobacteriaceae.

Enrollment

Allocated to 2′FL (n 30)
• Received allocated intervention (n 30)
• Did not receive allocated intervention (n 0)

Assessed for eligibility (n 110)

Analysed (n 30)
• Excluded from analysis (n 0)

Excluded (n 10)
• GSRS score too high (n 6)
• Antibiotic treatment (n 3)
• Enough subjects recruited (n 1)

Randomized (n 100)

Lost to follow-up (n 0)
Discontinued intervention (n 0)

Allocated to LNnT (n 30)
• Received allocated intervention (n 30)
• Did not receive allocated intervention (n 0)

Allocated to 2′FL:LNnT mix (n 30)
• Received allocated intervention (n 30)
• Did not receive allocated intervention (n 0)

Allocated to placebo (n 10)
• Received allocated intervention (n 10)
• Did not receive allocated intervention (n 0)

5 g
(n 10)

10 g 
(n 10)

20 g 
(n 10)

Allocation

Analysed (n 30)
• Excluded from analysis (n 0)

Lost to follow-up (n 0)
Discontinued intervention (n 0)

Analysed (n 30)
• Excluded from analysis (n 0)

Lost to follow-up (n 0)
Discontinued intervention (n 0)

Analysed (n 10)
• Excluded from analysis (n 0)

Lost to follow-up (n 0)
Discontinued intervention (n 0)

Follow-up

Analysis

5 g 
(n 10)

10 g 
(n 10)

20 g 
(n 10)

5 g 
(n 10)

10 g 
(n 10)

20 g 
(n 10)

Fig. 1. Flow chart of the study. A total of 110 healthy, adult volunteers were screened for eligibility to participate in the study; 100 of them were randomised to one of the
following intervention groups: 2′-O-fucosyllactose (2′FL), lacto-N-neotetraose (LNnT) or 2:1 mix of 2′FL:LNnT, each in three daily doses of 5, 10 or 20 g, or 2 g glucose
as placebo. GSRS, gastrointestinal symptom rating scale.
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At the lower taxonomic level, the increase in Actinobacteria
could be fully explained by the increase in Bifidobacterium, as
this genus showed equal changes in sequence abundance as at

the phylum level (Fig. 5). The Bifidobacterium abundance was
significantly increased compared with placebo for groups tak-
ing 10 g of 2′FL, 5, 10 or 20 g of LNnT, and 10 or 20 g of the mix.
In total, 77% of the participants responded to the HMO inter-
ventions. We defined a responder as a participant having an
increase in sequence abundance of Bifidobacterium >10%.
There was no statistically significant association, indicating that
the initial abundance of Bifidobacterium determined whether
an individual was a responder or non-responder to the bifido-
genic effect of 2′FL and LNnT (Mann–Whitney test, P= 0·359).
In addition, no correlation could be observed between initial
abundance and change in bifidobacteria (linear regression,
r2= 0·016; P= 0·284). Three dominant OTU (s1_r64, s1_r2031
and s1_r379) belonging to Bifidobacterium were affected by
HMO supplementation. The changes in abundance of these
OTU are shown in Fig. 6. The OTU most affected by HMO
supplementation was s1_r64. The abundance of this OTU
increased after HMO intervention. Compared with placebo, this
change was statistically significant for groups taking 10 g of 2′FL
and 10 or 20 g of LNnT or mix. The abundance of s1_r2031
increased significantly compared with placebo only for those
taking 20 g of the mix. The three OTU were identified using
Blastn and showed high sequence similarity to B. adolescentis
(>99%) for s1_r64, to B. longum (>99%) for s1_r2031 and to
B. bifidum (>99%) for s1_r379. The effect of the HMO inter-
vention on eighteen selected genera – Bifidobacterium,
Bacteroides, Barnesiella, Parabacteroides, Prevotella, Alistipes,
Lactobacillus, Eubacterium, Blautia, Coprococcus, Dorea,
Lachnospiracea incertae sedis, Roseburia, Faecalibacterium,
Ruminococcus, Dialister, Escherichia/Shigella and Akkerman-
sia – associated with health or disease in obesity, irritable bowel
syndrome or inflammatory bowel disease(55–57) was examined.
As shown in Fig. 7, 10 g of HMO did not affect the relative
abundance of these genera other than Bifidobacterium during
the 2 weeks of intervention. Similar results were observed for
the other two doses – 5 and 20 g (data not shown). For the
placebo group, none of the eighteen genera changed. Despite
shifts in microbial composition, no significant difference in the
SCFA acetate, butyrate or propionate was observed after
2 weeks of intervention (Fig. 8). Pearson’s correlation was
applied to determine the relationship between bifidobacteria
and SCFA concentration. A positive correlation was found
between propionate and bifidobacteria in those taking 10 g of
HMO (r 0·418; P< 0·05). The opposite was found for subjects
taking 5 g of HMO, where a negative correlation was obtained
between acetate or propionate and bifidobacteria (r −0·357;
P< 0·05 or r −0·404; P< 0·05, respectively). In breast-fed
infants, Bifidobacterium species such as B. longum subsp.
infantis, B. breve and B. bifidum dominate. In this adult study,

Incomplete
emptying

Abdominal pain

Heartburn

Reflux

Hunger pains

Nausea

Rumbling

Bloating

BurpingPassing gas

Constipation

Diarrhoea

Loose stools

Hard stools

Urgency

Abdominal pain
Incomplete
emptying

Urgency

Hard stools

Loose stools

Diarrhoea

Constipation

Passing gas Burping

Bloating

Rumbling

Nausea

Hunger pains

Reflux

Heartburn

Abdominal pain

Incomplete
emptying

Urgency

Hard stools

Loose stools

Diarrhoea

Constipation

Passing gas Burping

Bloating

Rumbling

Nausea

Hunger pains

Reflux

Heartburn

(a)

(b)

(c)

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

*

*

*

*
*

*

*

*

*

Fig. 2. Gastrointestinal symptom rating scale (GSRS) scores at the end of the
intervention. Scores ranged from 1 (no discomfort) to 7 (very severe discomfort).
(a) 2′-O-fucosyllactose (2′FL) supplementation groups and placebo group;
(b) lacto-N-neotetraose (LNnT) supplementation groups and placebo group;
(c) 2′FL:LNnT (2:1) mix supplementation groups and placebo group. , 20g,

, 10g, , 5 g, , placebo. GSRS scores at the end of intervention
for placebo and the intervention group were compared using a two-way
ANOVA and Bonferroni’s multiple comparisons correction. * Significantly different
between the intervention group and the placebo group (P<0·05).
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we determined that particularly one OTU (s1_r64) with high
sequence similarity to B. adolescentis is the main responder to
2′FL and LNnT supplementation.

Discussion and conclusion

This study provides the first assessment on the safety, tolerance
and influence on adult gut microbiota populations of 2′FL,
LNnT and a mix of 2′FL and LNnT. All 100 healthy, adult par-
ticipants completed the study according to the protocol, without
any premature discontinuation, thus demonstrating that the
daily uptake of up to 20 g of the HMO 2′FL and LNnT is
perfectly safe in adults.

Blood safety assessments and physical examinations revealed
no irregularities considered due to intake of the study products
in any intervention group. Adverse events reported related
mainly to GI symptoms, particularly gas/flatulence, and were
characterised as mild. The relationship between the reported
adverse events to intake of the study products was mainly
described as ‘possible’. However, as many of the symptoms
reported were common GI symptoms, it was difficult to judge
whether the symptoms were actually related to the study pro-
duct or to normal day-to-day variation or increased awareness
of GI symptoms during the trial period. In all, the study raised
no safety concerns. Preclinical toxicology studies of chemically
produced 2′FL and LNnT have previously confirmed the safety
of intake(44,45), and an EFSA panel on Dietetic Products,

Table 2. Stool characteristics during the 2 week intervention for healthy adult volunteers
(Grand mean values and standard deviations of BSFS recorded daily during the screening period (before) and during (after) the intervention)†

2′FL LNnT Mix

20 g 10 g 5g 20 g 10g 5g 20 g 10g 5 g Placebo

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Bowel movement
B 1·3 0·3 1·4 0·6 1·4 0·6 1·4 0·5 1·5 0·6 1·3 0·2 1·2 0·4 1·3 0·5 1·4 0·6 1·2 0·3
A 1·6* 0·4 1·6 0·8 1·3 0·4 1·7* 0·6 1·6 0·7 1·6* 0·3 1·4 0·5 1·4 0·6 1·3 0·5 1·3 0·4

Stool consistency
B 3·5 0·7 3·9 0·8 3·7 0·8 3·6 0·7 3·8 0·3 4·0 0·7 3·8 0·6 3·7 0·7 4·1 0·8 3·9 0·8
A 4·0* 0·5 4·0 0·7 3·8 0·6 3·9* 0·8 3·8 0·5 4·1 0·8 3·7 0·9 4·0 0·6 4·5 0·9 3·9 0·8

2′FL, 2′-O-fucosyllactose; LNnT, lacto-N-neotetraose; Mix, 2′FL:LNnT (2:1); B, before; A, after.
* The difference in stool characteristics from before and after intervention for each individual group was determined using Wilcoxon’s signed-rank test (P< 0·05).
† Bowel movement: number of daily bowel movements. Stool consistency: measured with the Bristol Stool Form Scale (1=hard lumps; 7= liquid stools).
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pattern. After intervention, the human milk oligosaccharide supplementation groups followed an axis of increasing Actinobacteria and decreasing Firmicutes for
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Nutrition and Allergies (NDA) has further assessed and con-
cluded that 2′FL and LNnT as produced by Glycom A/S are safe
for use in foods(46,47).

HMO as a part of breast milk are well tolerated by infants even
at high doses, because the mother’s milk contains 5–25g/l of
HMO(18). However, the adult tolerance to high bolus doses of
selected HMO was unknown before this study. The doses used
were selected from a safety and tolerance perspective and based
on the average daily intake of 2′FL and LNnT in infants. The
intake of 2′FL can be approximated to 170–660mg/kg body
weight per d and potentially up to 1150mg/kg body weight
per d(46), and the intake of LNnT can be approximated to
20–100mg/kg body weight per d and potentially up to 385mg/kg
body weight per d(47). On a 70-kg body weight basis for adults,
these values correspond to 12–46g 2′FL per d and potentially up
to 80 g per d and 1·4–7g of LNnT per d and potentially up to 27g
LNnT per d. The maximum 20g per daily bolus dose was selected
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Fig. 5. Change in sequence abundance of Actinobacteria (a) and Bifidobacterium (b). The box represents the median and the 25th to 75th percentiles. The whiskers
represent the smallest and largest changes observed. * Significantly different between the intervention group and the placebo group (P< 0·05). 2′FL,
2′-O-fucosyllactose; LNnT, lacto-N-neotetraose; Mix, 2′FL:LNnT (2:1).
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(OTU) showing high similarity to the described Bifidobacterium species,
B. adolescentis, B. longum and B. bifidum. The box represents the median and
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Fig. 7. Relative abundance of faecal bacteria at the genus level from before and after intervention. The eighteen genera, Bifidobacterium, Bacteroides, Barnesiella,
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eighteen genera from the placebo. Values are means, with their standard errors represented by vertical bars. Multiple t test was performed followed by a calculation of
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after comparison with other prebiotic oligosaccharides that are
commonly used in adult applications and that typically show
pronounced tolerability issues beyond this dose(58). The infant
intestinal microbiota is very different from that of the adult and
contains greater abundance of bacteria, particularly bifidobacteria,
which are known to metabolise HMO(37). Therefore, infant toler-
ance cannot be assumed to be a basis for adult tolerance, and

therefore doses lower than the potential maximum infant expo-
sure were selected. To assess the adult tolerance of daily boluses
of 2′FL and LNnT, the participants were asked to fill in a GSRS
questionnaire. At entry, the mean score on the GSRS total was less
than the population norm of 1·53 based on a Swedish adult
background population(59). The mean scores on the GSRS total
after intervention remained below the population norm except for
the group receiving the 20-g dose of 2′FL. This increased to 1·87,
which is still rated as minor discomfort on the GSRS scale. For
individual symptoms, an increase in passing gas and bloating was
observed for the higher doses of 2′FL and LNnT alone. However,
even these scores remained low during the intervention and were
rated as mild discomfort on the GSRS scale. Therefore, we con-
clude that 2′FL, LNnT and a mix of 2′FL and LNnT are well tol-
erated by healthy adults even at high bolus doses. Interestingly,
none of the doses of the mix of 2′FL and LNnT induced GI
symptoms as measured by the GSRS. The tolerance conclusions
based on the GSRS scores are corroborated by the stool frequency
and stool consistency results, which revealed at most small, clini-
cally irrelevant changes.

A main objective of this study was to assess the effect of 2′FL
and LNnT on the adult gut microbiota. Several studies have
examined the impact of prebiotics such as galacto-
oligosaccharides and fructo-oligosaccharides on the human
intestinal microbiota, although most studies only monitored a
few selected bacterial taxa using qPCR or fluorescence in situ
hybridisation(60–62). Only a few studies provided comprehen-
sive, high-resolution data of the human gut microbiota through
high-throughput sequencing, after prebiotic consumption(63,64).

Our study showed that the uptake of 2′FL and LNnT for
2 weeks is sufficient to modulate the adult microbiota. An
increase in relative abundance of bifidobacteria, to >25% in
some individuals, and a reduction in relative abundance of two
phyla, Firmicutes and Proteobacteria, were observed. This
modulation occurred rapidly – namely, within 1–2 weeks – and
the bifidogenic effect was significant despite being on top of a
normal, non-standardised complex adult diet. The observed
increase in bifidobacteria was dose dependent but unrelated to
the initial bifidobacteria abundance. Different results have been
observed for galacto-oligosaccharides, where the greatest bifi-
dogenic response occurred in individuals having the highest
initial bifidobacteria abundance(61).

Interestingly, most of the increase in bifidobacteria abun-
dance can be explained by the increase in a specific OTU
(s1_r64). This OTU has high sequence similarity (>99%) to
B. adolescentis, which is surprising, given that B. adolescentis is
not known to metabolise HMO(65). However, based on the 16S
rRNA sequencing data, we cannot exclude at this stage that the
OTU is in fact another member of Bifidobacterium. To assess
the impact of 2′FL and LNnT supplementation on other genera
relevant to human health, we specifically looked at changes in
the relative abundance of eighteen genera reported to be cor-
related to health or disease in conditions such as obesity, irri-
table bowel syndrome or inflammatory bowel disease(55–57).
The abundance of putative beneficial taxa such as Faecali-
bacterium, Roseburia, Akkermansia or Lactobacillus, however,
did not decrease concomitantly to the increase in bifidobacteria
observed in 2′FL- and LNnT-supplemented subjects.
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Bifidobacteria have for long been regarded as beneficial
members of the human gut microbiota, and low levels have
been reported in obese and diabetic individuals(41,66), in indi-
viduals taking antibiotics(67) and in patients suffering from irri-
table bowel syndrome or inflammatory bowel disease(39,68).
Safe and well-tolerated interventions, such as HMO supple-
mentation, thus represent approaches worth considering to
replenish bifidobacteria in individuals presenting low levels of
these bacteria.
In conclusion, we show that 2′FL and LNnT are safe and well

tolerated in healthy adults. Intriguingly, the mix of 2′FL and
LNnT was better tolerated than the individual HMO when given
at high doses. We further show that both 2′FL and LNnT are
specific modulators of the adult microbiota with a very specific
increase in bifidobacteria, particularly one OTU (s1_r64). Our
results suggest that supplementing the diet with 2′FL and LNnT
may be a valuable tool to restore homoeostasis in adults having
an imbalanced microbiota.
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