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Antibiotics create a shift from mutualism to ")
competition in human gut communities
with a longer-lasting impact on fungi than
bacteria
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Abstract

Background: Antibiotic treatment has a well-established detrimental effect on the gut bacterial composition, but
effects on the fungal community are less clear. Bacteria in the lumen of the gastrointestinal tract may limit fungal
colonization and invasion. Antibiotic drugs targeting bacteria are therefore seen as an important risk factor for
fungal infections and induced allergies. However, antibiotic effects on gut bacterial-fungal interactions, including
disruption and resilience of fungal community compositions, were not investigated in humans. We analysed stool
samples collected from 14 healthy human participants over 3 months following a 6-day antibiotic administration.
We integrated data from shotgun metagenomics, metatranscriptomics, metabolomics, and fungal ITS2 sequencing.

Results: While the bacterial community recovered mostly over 3 months post treatment, the fungal community
was shifted from mutualism at baseline to competition. Half of the bacterial-fungal interactions present before drug
intervention had disappeared 3 months later. During treatment, fungal abundances were associated with the
expression of bacterial genes with functions for cell growth and repair. By extending the metagenomic species
approach, we revealed bacterial strains inhibiting the opportunistic fungal pathogen Candida albicans. We
demonstrated in vitro how C. albicans pathogenicity and host cell damage might be controlled naturally in the
human gut by bacterial metabolites such as propionate or 5-dodecenoate.

Conclusions: We demonstrated that antibacterial drugs have long-term influence on the human gut mycobiome.
While bacterial communities recovered mostly 30-days post antibacterial treatment, the fungal community was
shifted from mutualism towards competition.
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Background

The human gut microbiome is a complex ecosystem of
bacteria, fungi, archaea, and phages [1]. The majority of
research has focused on the bacterial part of the gut
microbiome and their role in health and disease [2—4].
However, the critical role of fungi in host homeostasis
remains is less well studied. Fungal dysbiosis may in-
crease symptoms of inflammation, especially in the gut
lumen [5]. Treating mice with fluconazole, an antifungal
drug, increases the immune response and severity of ex-
perimentally induced colitis [6] but also induced allergic
airway disease [7]. Fluconazole seems to substantially
impact only certain types of fungi such as Candida, but
not Aspergillus species [6].

Antibiotic treatment has a well-established detrimental
effect on the composition of gut bacteria [8—11], but the
effect on the fungal community is less clear. Neverthe-
less, antibiotic use is linked to overgrowth of particular
fungi at multiple body sites [7, 8, 12]. Noverr et al. used
a murine model to induce development of airway aller-
gies by enriching for Candida and Aspergillus species in
the gut followed by antibiotic treatment [10]. Theoretic-
ally, commensal bacteria may limit fungal colonization
by production of antifungal compounds [13], competi-
tion for available nutrients, cellular contact, chemotaxis,
or physiochemical changes to the local environment [14,
15]. Fungi defend themselves by secreting molecules,
forming biofilms or forming mutualistic bonds with
other bacteria. Candida albicans, for example, secretes
the metabolite farnesol which interferes with the
quorum-sensing of Pseudomonas aeruginosa [14, 15].
However, C. albicans can also enhance biofilm forma-
tion by Staphylococcus aureus in vitro. Pseudomonas
fluorescens promotes the growth of the mycorrhizal fun-
gus Laccaria bicolor in soil. Which bacterial-fungal in-
teractions take place in the gastrointestinal tract of
humans remains to be investigated. To date, the com-
plex community of gut microbes is thought to be coe-
volved to maintain relative homeostasis in healthy
humans [16].

Defining gut fungal consortia and their stability, resili-
ence, and dynamics may reveal cause-effect relationships
with bacteria. Although evidence is available on
bacterial-fungal interactions in the gut at the taxonomic
level [13-15], we do not have a comprehensive under-
standing of how bacterial functions influence the growth
of particular fungi. Bacterial microbiome studies were
often performed by amplifying the DNA of the riboso-
mal 16S gene. However, metagenome shotgun sequen-
cing allows species- and sometimes even strain-level
taxonomic classification, as well as the estimation of
gene functions [17-19]. Furthermore, gene expression in
microbial communities is not strictly matched with
metagenomic potential [20]. Often, studies neglect the
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high transcriptional activity of some less-abundant spe-
cies to metabolic functions.

In order to better understand the microbiome, we pro-
vide data to follow both, the bacterial and fungal com-
munities of the lower human gastrointestinal tract over
3 months after antibiotic treatment concomitantly. We
provide an overview of how the mycobiome and its in-
teractions with the bacterial microbiome change and we
reveal dependencies of specific fungal species from bac-
terial functions at DNA and RNA levels.

Results

Antibiotic treatment triggers long-lasting dynamics at
fungal species level

We included 14 healthy human participants, 12 receiving
the antibiotic intervention and 2 controls. Stool samples
were collected at 4—6 time points per participants. We
used 5 different antibiotics (one for each pair of treated
participants). Samples were collected 15 days before ad-
ministration of antibiotics (baseline), at 4 and 6 days of
treatment (during treatment [DT]), 15 and 30 days after
(early post treatment [EPT]), and 90 days after treatment
(late post treatment [LPT]). We built high-quality librar-
ies for ITS2 sequencing for 59 of 74 available stool sam-
ples. We estimated the fungal relative abundance using
the PIPITS pipeline [21]. ITS sequences were clustered
into operational taxonomic units (OTU) and taxonomic-
ally annotated using Mothur [22]. Antibiotic treatment
led to a significant increase in species-level fungal alpha
diversity during early post treatment compared to base-
line (Fig. la; two-sided Wilcoxon rank-sum test, p =
0.016, g = 0.094). Controls showed a considerable in-
crease as well, although statistical significance could not
be estimated due to the number of subjects (n = 2). At
the level of individual antibiotic drugs (Suppl. Fig. 1),
Augmentin and ciprofloxacin more than doubled base-
line diversity. In contrast, changes for doxycycline and
azithromycin were mild. Beta diversity using Bray-Curtis
was not significantly different between time points in
treated samples (Fig. 1b; PERMANOVA, p > 0.05).

We subsequently investigated differences in fungal
genera relative abundance over time. Candida genus in-
creased 15-fold from baseline to treatment (g = 0.004;
Suppl. Table 1). Candida increase was observed for all
antibiotics except Augmentin (Suppl. Fig. 2). At the spe-
cies level, results were more distinct (Suppl. Table 2)
and for this analysis, we considered only prevalent fungal
species (defined as present in 15% of samples). Compar-
ing relative abundance changes from baseline to during
treatment, only Saccharomyces sydowii decreased signifi-
cantly (g < 0.05). However, the opportunistic pathogen
Candida albicans tended to increase 7-fold (g < 0.07)
and was affected the most by Augmentin and doxycyc-
line (Suppl. Fig. 3). Furthermore, C. albicans was
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Fig. 1 Antibiotic treatment induces fungal competition. Statistical testing by Wilcoxon signed-rank tests with p values adjusted for multiple testing
using false discovery rate (FDR) (g = FDRIp]). Not significant, ns: g = 0.05; *g < 0.05; **g < 0.01; ***g < 1e— 3; ***q < Te—4; ****g < 1e— 5. a, b Diversity
analysis of samples from treated participants using PIPITS operational taxonomic units (OTU) relative abundances. a Boxplots showing Shannon (left)
and Gini-Simpson indexes (middle) and species richness (right) with median (centerlines), first and third quartiles (box limits), and 1.5% interquartile
range (whiskers). No significant changes were observed (g < 0.05). b Non-metric dimensional scaling of Bray-Curtis distance as a measure of beta
diversity. No significant differences (p < 0.05) were found between time points using PERMANOVA. ¢, d Co-abundance network analysis using BANOCC.
Only OTUs with prevalence 10% and significant correlations (95% credibility interval) with |r] = 0.3 were used for network construction. Networks were
created independently for baseline, during (DT), early post (EPT), and late post treatment (LPT) to show temporal changes in fungal communities. ¢
Fungal networks. Node colour indicates fungal phyla. Blue, Ascomycota; red, Basidiomycota; green, Mucoromycotina; grey, unknown. Edge colour

indicates correlation type. Red, positive; blue, negative. d Network properties. Bar plots show number of nodes that increased and decreased in node
degree centrality

detected in nine participants after treatment even
though in only five at baseline.

Twenty-three species changed significantly from treat-
ment to early post treatment periods (g < 0.05), many of

which were not present before or after treatment. Many
common fungi like Saccharomyces spp., opportunistic
pathogens such as C. albicans, C. parapsilosis, and
Malassezia restricta—a fungus recently connected to
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pancreatic cancer [23]—decreased in abundance,
whereas less common fungi such as Candida boidinii in-
creased in abundance. A minor decrease in abundance
of C. albicans was also observed in controls, but not
nearly as much.

To test for long-lasting changes, we compared relative
abundances at baseline to late post treatment and found
six species with significant changes. We further noticed
that only 14 fungal species passed the prevalence filter at
baseline and late post treatment, whereas up to 44 were
observed during and early post treatment, suggesting
that antibiotics temporarily created a niche for less com-
mon fungal species. In summary, the number of de-
tected, prevalent species more than doubled during
treatment and early post treatment, but these species
had not successfully colonized 3 months later. Most
changes were found within the first month after treat-
ment, implying a delayed response of the fungal commu-
nity to the treatment. Over one third of the fungal
species present before treatment showed significant
changes even 90 days after treatment.

Antibiotic treatment increases co-exclusion in fungal
communities

We evaluated changes induced in the mycobiome from
antibiotic administration by creating co-abundance net-
works based on ITS abundances. Networks were created
for baseline and for during, early, and late post treat-
ment periods (Fig. 1d). Only significant edges (95% cred-
ibility) with absolute correlation of at least 0.3 were
retained. Generally, we found significant correlations
within and between Ascomycota, Basidiomycota, and
Mucoromycotina species. At baseline, we found mostly
positive correlations (240 positive and 10 negative)
among 57 fungal species. During treatment, the number
of correlations almost doubled (406 positive, 17 nega-
tive), whereas at early post treatment, correlation num-
bers doubled again. In contrast to the previous
networks, more than half of the significant correlations
were negative (399 negative, 550 positive), implying a
major switch from mutualistic relationships at baseline
and during treatment to competition between fungal
species as they try to re-establish a stable community.
We also observed these negative correlation patterns
within and between fungal phyla. At late post treatment,
this conflict persisted. Most co-abundance patterns had
disappeared—only 25 correlations among 15 fungal spe-
cies remained. We confirmed these trends by testing for
significant changes in node degree centrality (Fig. le;
Suppl. Table 3).

In conclusion, based on diversity, abundance, and net-
work analysis, we observed that gut fungal communities
started to change alongside the bacterial communities
during treatment. Many fungi failed to colonize
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successful and competition emerged during early post
treatment, leading to changes that lasted 90 days after
treatment. The human mycobiome became more sto-
chastic, leading to strikingly less co-abundance patterns
among fungal species. These findings indicated that the
gut mycobiome was not resilient enough to recover from
the influence of antibiotics within 3 months.

Changes in functional metagenomic diversity from
antibiotics are not strictly followed by changes in
metatranscriptomic diversity

We characterized the subjects’ microbiomes at baseline
(Suppl. Fig. 4) and found that bacterial communities
were dominated by bacteria from the Bacteroidetes and
Firmicutes phyla but with strong variation in ratio, as ex-
pected in healthy individuals [16, 24]. In line with previ-
ous studies, we observed a significant decrease in
bacterial species alpha diversity (Suppl. Fig. 5). Cipro-
floxacin had the strongest (- 40%) and cefuroxime the
weakest negative effect (— 5%), whereas controls only an
insignificant increase (2%) (Suppl. Fig. 6). Beta diversity
was significantly different during antibiotic treatment,
but not in controls. In addition, we found that antibiotic
treatment had the strongest influence on moderately
abundant bacterial species (Suppl. Fig 5). We then esti-
mated bacterial growth using GRiD [25] (Suppl. Table
4). In antibiotic-treated subjects, median growth of spe-
cies decreased significantly during treatment compared
to baseline as expected (p = 0.009, r = — 0.56, Suppl. Fig.
7). Interestingly, the number of species with growth rate
greater 1 increased significantly (p = 0.0016, r = 0.68).

We subsequently investigated functional changes
based on bacterial gene family abundance in the meta-
transcriptome and the metagenome. Alpha diversity of
relative DNA gene family abundance was significantly
reduced during treatment compared to baseline (Fig. 2a;
q < 0.05), but not in controls (Suppl. Fig. 8). Despite the
changes at the DNA level, the alpha diversity for relative
RNA gene family abundance did not change significantly
between time points (Fig. 2b; g > 0.05).

We investigated differences in beta diversity of gene
family abundances based on Bray-Curtis dissimilarity (Fig.
2¢, d). We performed ordination and statistical testing
using distance-based redundancy analysis (dbRDA) using
“subject id” as a constrained variable and “sample time” as
an independent variable. In treated subjects, both DNA
and RNA functional abundances showed significant differ-
ences in centroids between timepoints (Fig. 2c, d; DNA: F
=2, p = 0002, Df = 5; RNA: F = 1.6, p = 0.037, Df = 5).
This was not observed in controls (Suppl. Fig. 9). Pairwise
dbRDA revealed a significant difference from baseline to
treatment in DNA functional abundance (F = 3.13, ¢ =
0.014, Df = 1; Suppl. Table 5). For RNA abundance, we
observed only a trend (F = 1.6, p = 0.085, Df = 1). Overall,
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Fig. 2 Metagenomic contributional alpha diversity of metabolic function is severely reduced by antibiotic treatment. Diversity analysis of metagenomic
and metatranscriptomic samples from participants using HUMANN?2 relative abundances. a, b Alpha diversity of gene family relative abundances using
a metagenomic and b metatranscriptomic data. Boxplots show species richness (left), Shannon (middle), and Gini-Simpson indexes (right) at 15 days
before treatment (baseline), during (DT), and 30 days (EPT) and 90 days post treatment (LPT). Median (centerlines), first and third quartiles (box limits),
and 1.5x interquartile range (whiskers) are shown. Lines between boxes connect same-donor samples. Statistical testing was by Wilcoxon signed-rank
test with p values adjusted for multiple testing using false discovery rate (g; *0.01 < p < 0.05). ¢, d Constrained ordination of Bray-Curtis dissimilarity
based on gene family abundances measured using principle coordinate analysis (PCoA). We used distance-based redundancy analysis to show the
explained variance by sample time points while accounting for participant-specific influence. e-g Contributional Shannon diversity of MetaCyc
pathways of baseline and treatment samples. e Top, metagenomic and bottom, metatranscriptomic contributions. Mean (solid lines) and first and third
quartiles (transparent ribbons) are shown. f Mean contributional diversity per participant per time point for DNA (top) and RNA (bottom). g Species with
significantly increased (blue, +) and decreased (red,
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these findings implied that the genetic potential of the
bacterial community was reduced during treatment as ex-
pected. However, gene expression changes were consider-
ably less compared to the metagenome and not as
among participants.

consistent

Similarly,

antibiotic

treatment had no significant effect on the transcriptional
activity of the core and variable metabolic pathways (as
defined in [20]; Suppl. Fig. 10). In agreement with previous
findings [20], the metatranscriptome was much more dy-
namic than the metagenome.
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Diversity of bacterial contribution to metabolic pathways is
systematically reduced by antibiotics

We investigated if the contribution of species to a given
pathway changed significantly over time [26] (Fig. 2g, h;
Suppl. Fig. 11). By DNA, the median contributional
alpha diversity of antibiotic-treated participants de-
creased significantly from baseline to treatment (Shan-
non: log, fold-change [If2] = - 0.4; g = 0.015; Simpson:
If2 = - 0.24; ¢ = 0.015). Controls showed no significant
changes (g > 0.05). In contrast, we did not observe sig-
nificant changes in alpha diversity measures for RNA (g
> 0.05). We further investigated if the contribution of
single bacterial species to metabolic pathways changed
significantly between time points. We implemented a
compositionality test as described in Palleja et al. [27],
considering all pathways, and found 9 bacterial species
whose contribution significantly changed (¢ < 0.1; Fig.
2i). Important gut commensal bacteria including Akker-
mansia muciniphila, Faecalibacterium prausnitzii, Odor-
ibacter splanchnicus, and Bifidobacterium adolescentis
contributed less during treatment. A decline of such
butyrate-producing species following antibiotic treat-
ment has been observed before [11, 27]. In contrast, the
multiantibiotic-resistant bacterium Clostridium bolteae
[28] contributed more.

Antibiotic treatment lastingly reduced bacterial-fungi
interactions

We increased the functional resolution of bacterial species
using the metagenomic species (MGS) concept [29],
which allows identification of taxonomically unidentified
bacterial species. We further improved the method to
identify some bacteria at the strain level based on their
genetic potential. In contrast to previous studies, we used
HUMAnNN2 [19] gene family profiles as references in ac-
cordance with a published protocol [30]. HUMAnN2-
derived profiles allowed us to retrieve MGS with high pur-
ity (i.e. more than 95% of genes in an MGS group origi-
nated from the same species; Suppl. Table 6). We then
identified 26 MGS with significant change in relative
abundance during treatment compared to baseline (Suppl.
Fig. 12; Suppl. Table 7), which was not observed in con-
trols. Six of these had species-level annotation and were
consistently decreased independent of the antibiotic drug
used (Ruminococcus lactaris, Dialister invisus, Odoribacter
splanchnicus, Bacteroidetes bacterium ph8, Akkermansia
muciniphila, Bifidobacterium adolescentis; full list in
Suppl. Figs. 13 and 14).

We combined MGS and ITS relative abundance data
and used BAnOCC [31] to infer intra- and cross-
kingdom associations among bacterial and fungal spe-
cies. We created co-abundance networks at the species
level for baseline and for during, early post and late post
treatment periods independently as described above
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(Suppl. Fig. 15). In order to find significant changes in
the structure of co-abundance networks, we compared
differences in node degree. The degree of a node is de-
fined by the number of significant correlations with that
node. Hence, an increase in node degree implies an in-
crease of potential interactions, i.e. an increase of poten-
tially relevant effects. To study changes in bacterial-
fungal interactions, we tested for significant differences
in node degree centrality considering only cross-
kingdom correlation (Fig. 3a, c¢; Suppl. Table 8). We
observed a temporal increase in node degree during
treatment compared to baseline (¢ = 0.055). From
during to early post treatment, this degree dropped (g =
0.0185) and decreased further at late post treatment (g =
0.0185). To find lasting changes, we compared baseline
against late post treatment and found significantly re-
duced degree (¢ = 0.00134). Considering these results in
addition to the loss of correlations observed in the fun-
gal network, we conclude that antibiotic treatment was a
triggering event for disturbances in bacterial-fungal in-
teractions. These disturbances ultimately drove gut bac-
teria and fungi towards independence.

We looked more closely at co-abundance patterns in-
volving bacterial species with significant changes in
abundance or pathway contribution during treatment
(Fig. 3c¢; all significant correlation in Suppl. Table 9). C.
bolteae increased in relative abundance during treatment
and correlated positively with many fungal species dur-
ing treatment, such as the opportunistic pathogen C.
albicans, or the mycotoxin producers Aspergillus penicil-
lioides and Penicillium glandicola. In contrast, O.
splanchnicus was persistently negatively correlated with
opportunistic pathogens from the genera Candida,
Aspergillus, and Alterna. O. splanchnicus is part of the
healthy gut community but rarely investigated in terms
of its role. Roseburia inulinivorans was negatively associ-
ated to opportunistic pathogens C. albicans, C. sake, and
P. glandicola. Low Roseburia abundance was associated
with higher glucose levels and ulcerative colitis [32, 33].
Likewise, Eubacterium rectale was negatively associated
with C. albicans and P. glandicola. Depending on the
diet, Eubacterium rectale decreased glucose and insulin
levels [34]. Notably, butyrate-producing species were
negatively associated with at least one opportunistic fun-
gal pathogen.

At last, we considered bacterial-fungal correlations to-
gether with MGS abundance changes during treatment
and fungal abundance changes in early post treatment.
Bacterial species with decreased relative abundance and
negative correlation to a fungus that showed an increased
abundance were considered competitors. For example, O.
splanchnicus was decreased during treatment, and showed
negative correlation to C. albicans. A list of possible
bacterial-fungal competitors is shown in Suppl. Table 10.
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Fig. 3 Cross-kingdom interactions among fungi, bacteria species, and pathway expression. a, b Co-abundance networks at indicated time points
using BANOCC with a 25% and b 50% prevalence filter. Only significant edges are shown (based on 95% credibility interval) with |r] = 0.3.
Negative correlations (blue), positive correlations (red). Networks are left (baseline) to right (late post treatment). a Correlations among fungal and
bacterial species based on metagenomic species (MGS) and internal transcribed spacer (ITS) relative abundance. b Correlations among fungal
species and pathway expression based on HUMANN2 RNA pathway and internal transcribed sequence relative abundance. Superpathways and
other pathways that did not fit into the six major categories were grouped as “other”. ¢ Estimated correlation between bacterial and fungal
species during treatment. Positive (red), negative (blue). Error lines show 95% confidence intervals. d Effect size of node degree change. r values
change from —1 (100% decrease) to 1 (100% increase). (Top) MGS and ITS relative abundances. (Bottom) RNA-PWY and ITS relative abundances.
Statistical testing for significant changes in node degree was performed using a two-sided Wilcox signed-rank test. P values were adjusted for
multiple testing using FDR. Node degree was determined independently for baseline, during (DT), early post (EPT), and late post treatment (LPT).
Significance is indicated by symbols (ns, g = 0.05; *q < 0.05; **g < 0.01; ***g < le— 3; ¥**¥*q < le—4; *****q < le-5)

Prevalent fungi correlated with pathway expression during
treatment

We investigated relationships among metabolic pathway
expression levels (MetaCyc database—PWY; metatran-
scriptomic abundance) and fungal ITS abundance (Fig.
3b) by creating co-abundance networks analogous to the
bacteria-fungi network. We tested for significant changes
in node degree considering only correlations between
fungal OTUs and pathway expression. From baseline to
treatment, node degree increased (¢ = 0.0185; Fig. 3d).
Most correlations were positive (146 of 189) during
treatment in contrast to baseline (82 of 153). Hence, and
despite the increase of variance of metatranscriptome di-
versity during treatment, we still observed co-abundance
with fungal species during treatment. This observation
suggested a mutual influence between the fungal com-
munity and expression of bacterial metabolic pathways.
About one third of correlations at baseline involved C.
albicans and one third involved Saccharomyces. After
treatment, node degree dropped significantly to below
baseline levels (during vs. early post: g = 4e- 11; early vs.
late post: ¢ = 0.0185; baseline vs. late post: g = 3e- 15).
Almost all C. albicans co-abundance patterns were lost
at 90 days post treatment, with Saccharomyces genus ac-
counting for over 70% of remaining correlations (24 of
31). Overall, Saccharomyces appears to be more resilient
with respect to bacterial metabolic pathways expression
than other prevalent fungi.

We then increased our resolution by focusing on
correlations between fungal OTU abundance and
pathways in broader functional categories (Suppl. Fig.
16; Suppl. Table 11). We observed a significant
increase in node degree from baseline to treatment
for pathway functions in nucleotide metabolism (g =
0.026) and biosynthetic pathways (e.g. for vitamins,
tetrapyrroles, NAD) (¢ = 0.043). Almost all correla-
tions were positive. We found no significant changes
in remaining categories (¢ < 0.1; metabolism of amino
acids, carbohydrates, fatty acids and lipids, secondary
metabolites). Node degree dropped significantly after
treatment in all categories except secondary metabol-
ite metabolism (g < 0.05).

Since our treatment targeted bacteria, we expected the
bacterial community to respond to the selective pressure
with strong, directed changes in pathway expression. Most
metatranscriptomic changes appeared to be stochastic.
Yet we still observed mostly positive co-abundance
patterns between fungal abundance and bacterial pathway
expression during treatment, especially with functions re-
quired for bacterial growth. Even though correlations do
not imply causations, when performed on multiple differ-
ent levels, they can still offer significant insights. The re-
sults suggested a common origin for changes in the
mycobiome and pathway expression: if gut fungi generally
take advantage of reduced complexity in the bacterial
community, we would expect an increase in fungal diver-
sity. However, we observed no systematic change. Highly
abundant and adapted fungi may still overgrow. In both
scenarios, we would expect an increase in negative corre-
lations between fungal and bacterial abundances during
treatment but found mostly positive correlations. Gener-
ally, antibiotics drove the mycobiome alongside the micro-
biome, leading to a temporal increase in fungal richness,
but also increased fungal competition subsequently. On
the long run, antibiotic treatment broke down most of the
inferred relationships between bacteria and fungi, as
shown by diverging mycobiomes 3 months after
treatment.

Key bacterial species and molecular mediators of Candida
albicans colonization

Our ITS data showed at least one C. albicans read per
participant over 112 days but with varying relative abun-
dance from 0 to 42%. C. albicans was detected during
treatment even if it was not detected at baseline, as in
other studies [12, 35], confirming antibiotic treatment as
risk factor for colonization and overgrowth of this fun-
gus. Furthermore, C. albicans significantly decreased 2
weeks after treatment, implying the indirect impact on
its growth by the microbiome. We searched for metabo-
lites detected in the human gut that may inhibit or pro-
mote C. albicans growth. We performed metabolomics
analyses on a subset of 15 stool samples and calculated
Spearman’s correlations for the relative abundance of
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each metabolite and relative abundance of C. albicans by
ITS (Suppl. Fig. 17). Based on these findings, we per-
formed C. albicans growth assays in defined medium
containing serial dilutions of selected metabolites. With
several metabolites, including 4-hydroxybenzoic acid and
8,11,14-eicosatrienoic acid, we observed only minor
growth reductions at the highest concentrations (Suppl.
Fig. 18). More pronounced growth reduction occurred
with adipic acid, aminoadipic acid, and ornithine, but
fungi still grew with high concentrations of these metab-
olites. In contrast, propionic acid, acetic acid, and cis-5-
dodecenoic acid fully inhibited growth at a range of con-
centrations. We then tested if the substances directly
damaged human cells. Using a human vaginal cell line
(A431) without C. albicans, the bile acid lithocholate
(LCA) and cis-5-dodecenoic acid showed limited cyto-
toxicity (Suppl. Fig. 19). No other substances caused de-
tectable cell damage.

Next, we assayed the effect on human cells by C. albi-
cans in presence of the same metabolites. At higher con-
centrations, when in vitro fungal growth was reduced,
human cell damage decreased with the short-chain fatty
acids (SCFAs) propionic (p < 0.05) and acetic acid (p <
0.001). Acetic or cis-5-docenoic acid (p < 0.01) almost
fully abolished cell damage by C. albicans. Benzoic acid
reduced damage to a lesser extent (p = 0.051). Since the
morphology (yeast or hyphal cells) is critical for its dam-
aging potential, we investigated if the substances also led
to morphological changes in C. albicans (Fig. 4e). On
high concentrations, hyphae formation and growth were
almost completely suppressed by 5-dodecenoic and
acetic acid. 5-dodecenoate also reduced hyphae forma-
tion under growth-permitting concentration. Glutathi-
one only allowed formation of chains elongated yeasts
resembling pseudohyphae. LCA partially suppressed hy-
phal growth at the high concentration, resulting in high
numbers of pseudohyphae and yeast cells.

These metabolites that affect C. albicans growth nega-
tively may also promote the growth of its fungal competi-
tors, such as Saccharomyces spp., Penicillium spp. and
Aspergillus spp. Therefore, we repeated the correlation
analysis with the corresponding OTUs (Suppl. Table 12).
For each fungal species, we found several metabolites with
positive correlation. Considering metabolites negatively af-
fecting C. albicans, only 2-methyl butanoic acid and 3-
hydroxy butyric acid were found to be significantly posi-
tively correlated with Penicillium spinulosum and LCA
with Aspergillus flavus. Still, promotive effects on other
fungal species need to be verified in future work.

Bacterial supernatant inhibits C. albicans growth

We investigated which gut bacteria might be the main
direct or indirect producers or contributors of these
compounds in our human participants. We correlated

Page 9 of 20

metabolite concentrations with MGS relative abun-
dances (Suppl. Fig. 20) and focused on positive associa-
tions. We looked at species that correlated with
multiple, different metabolites. Bacteroides coprophilus
correlated with aminoadipic acid and acetate; C. comes
with 4-hydroxybenzoic acid, 5-dodecenoate, and gluta-
thione; F. prausnitzii with 4-hydroxybenzoic acid; E.
lenta with 5-dodecenoate and eicosatrienoic acid; B.
eggerthii with 5-dodecenoate and eicosatrienoic acid;
and O. splanchnicus with acetate. All six species corre-
lated with LCA or its derivates.

Our correlation methods helped us to pinpoint bacteria
that may promote or inhibit C. albicans growth (Fig. 4a).
For testing these predicted associations in vitro, we
selected bacterial strains based on sufficient confidence in
our strain-level inference in addition to significant correl-
ation to C. albicans. We performed the strain identifica-
tion directly from the MGS profiling. Instead of strain
detection methods using single-nucleotide polymorphisms
(e.g. StrainPhlAn [18], metaSNV [36], ConStrains [37]),
we adopted a strategy based on gene content as in PanPh-
1An [38]. We therefore analysed reads corresponding to a
specific MGS. For example, gene coverage for O. splanch-
nicus strains for two participants (N, E; Fig. 4b; Suppl. Fig.
21) showed that both subjects had the highest coverage
for strain DSM 20712, so we selected DSM 20712 for
in vitro assays. In the end, we were interested in bacterial
strains for which we found significant correlation with in-
hibitory metabolites, significant correlation with C. albi-
cans, and high confidence from the strain inference. Based
on these results, we selected Bacteroides eggerthii and
Odoribacter splanchnicus for further in vitro experiments.

We determined the antifungal effect of metabolites
produced by selected bacterial strains using their steril-
ized culture supernatants as growth medium for C. albi-
cans. We measured C. albicans growth using 100% or
50% supernatant diluted in modified Gifu anaerobic
media (mGAM) (Fig. 4c). Percentage inhibition was
compared to optimal growth conditions in fresh
medium. C. albicans growth was significantly inhibited
by supernatants from B. eggerthii (50% growth) or O.
splanchnicus (40%). Using 100% bacterial supernatants
had stronger effects, showing that inhibition was propor-
tional to supernatant dilution (Suppl. Fig. 22). We tested
two additional C. albicans strains to exclude that ob-
served effects were strain specific but saw no differences
(Suppl. Fig. 22). B. eggerthii and O. splanchnicus also
inhibited C. albicans growth in pairwise in vitro co-
culturing experiments (Suppl. Fig. 23).

Finally, we analysed the supernatant of these species to
characterize their metabolic capabilities that may relate
to C. albicans growth (Suppl. Fig. 24-25). We included
the supernatant from Ruminococcus [Blautia] torques as
positive control, since this species was shown to have
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Fig. 4 Candida albicans growth promotors and inhibitors. a Bacterial species co-abundant with C. albicans. Line colours and type indicate correlation
coefficients. b Example using Odoribacter splanchnicus for genomic strain inference from metagenomic species (MGS) reads. Strains were inferred for
each time point (x-axis) from number of genes with 0.5 reads per base (y-axis) per-reference genome. Data are from the antibiotic-treated participant
N and untreated subject E. The number of genes coverage for each tested O. splanchnicus strains are shown. DSM 20712 was identical with another
strain labelled NCTC10825. ¢ Growth rate inhibition of C. albicans strain SC5314 cultivated with 50% and 100% bacterial supernatant (from Bacteroides
eggerthii and Odoribacter splanchnicus) compared to control of medium (mGAM) only. d Damage of human vaginal epithelial cells (A431) based on
release of lactate dehydrogenase (LDH) with metabolites at inhibitory concentrations. Grey lines, zero effect. Positive values imply cell damage. (Top)
Human cells cultured without C. albicans. Effect compared to untreated cells. (Bottom) Cells co-cultured with C. albicans. Values are relative to damage
caused by C. albicans without additional metabolites. Negative values imply less cell damage. e Composition of morphology of C. albicans cultures
quantified by concentration of morphological types. Some metabolites cause atypical formation of hyphae-like structures (“Pseudohyphae/elongated
yeast chains"). Some inhibited the formation of filaments or disrupted growth in general ("Yeast/no growth”)

positive effect on C. albicans growth previously (Mirhak-
kak et al., 2020, under review) and correlated positively
with C. albicans in our study. Compared to quality con-
trol samples, O. splanchnicus supernatant contained high
concentrations of butyric acid (7-fold relative conc.),

which suppresses C. albicans growth in vitro [39]. But
we also measured elevated levels of the growth suppress-
ing metabolites adipic and aminoadipic acid, and orni-
thine. In contrast, B. eggerthii supernatant contained
elevated levels of acetic acid (1.6-fold), formic acid (3-
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fold), and hexanoic acid (2-fold). The full growth-
inhibiting metabolites 2-methyl-propanoic acid and pro-
panoic acid were also found in supernatants of O.
splanchnicus and B. eggerthii, but roughly 3-times higher
in B. eggerthii. In contrast, R. torques produced only for-
mic acid in higher abundance (1.25-fold), but almost
none of the strong inhibitory SCFA. Altogether, the
supernatant analysis shows that propionate, ornithine,
and benzoic acid are effective inhibitors of C. albicans
growth, and these compounds were likely produced by
B. eggerthii and O. splanchnicus also in the human gut.

Discussion

Mouse models can offer some advantages for studying
competitive relationships between gut bacteria and fungi.
Previous studies have shown that antibiotics induce fun-
gal overgrowth in the murine gut lumen [12, 35, 40].
However, antibiotic doses used in mice experiments cre-
ate an almost germ-free environment after treatment,
which is unlikely to apply to the human gut with clinical
use of antibiotics. Furthermore, the mice gut micro-
biome and human gut microbiome differ considerably
[41-43]. For example, many Firmicutes spp., which rep-
resent major colonizers of the human gut, cannot effi-
ciently colonize the murine gut. Sovran et al. showed
that Enterobacteriaceae play an important role for
bacteria-fungi interactions in the murine gut [44]. In
their study, Enterobacteriaceae accounted for 40 to 65%
of reads in Vancomycin treated mice. We investigated
the relative abundance of Enterobacteriaceae spp. in our
human subjects. However, the accumulated relative
abundance of Enterobacteriaceae spp. for most samples
was below 1% before, during and after treatment (me-
dian 0.02%; except for Augmentin with 13%), making it
difficult to assess whether Enterobacteriaceae were rele-
vant for bacterial-fungal interactions in the human gut
(Suppl. Fig. 26).

In this study, we investigated if fungal overgrowth was
induced in the human gastrointestinal tract under
physiological conditions. We present evidence that
changes on fungal abundance at the species level are
highly dynamic in the lower human gastrointestinal
tract. Even though gut bacteria and fungi successfully
prevented several temporarily detected fungi from
colonization the lumen lastingly, we found significant
alternations to the relative abundance of several fungi
even 90 days after antibiotic treatment.

We used 5 different broad-spectrum antibiotics which
are commonly used to treat human diseases [45]. Recent
work by Maier et al. [46] addresses the issue that most
knowledge of antibiotic drugs and their bacterial targets
is based on pathogens and not the commensal micro-
biome. In a large screening of 144 different antibiotics
and the 40 most common gut microbial strains, most
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antibiotics inhibited growth of all tested bacterial strains.
Only Clostridium showed consistent resistance to many
drugs. Indeed, some bacterial species are stronger or less
affected depending on the antibiotic used. We investi-
gated how much these expected differences apply to our
data. Effect sizes varied, but overall, most of the signifi-
cant changes were independent of specific antibiotic
drugs. Because of our small cohort size, we cannot assess
if the differences in effect sizes are due to differences in
baseline communities or differential inhibition of the
drugs. More work is required by using bigger cohorts as
well as other antibiotic drugs with narrower targets.

Co-abundance networks inferred mutual relationships
between fungal species at baseline and during treatment.
Post treatment, however, competition emerged. Further-
more, we observed far fewer co-abundance patterns be-
tween fungi and bacteria in early and late post treatment
periods, indicating profound decline in bacterial-fungal
interactions. Overall, we found the fungal community to
be less resilient than the bacterial. Based on these data,
we hypothesize that the dominant gut fungi of healthy
individuals were in balance with gut bacteria. Antibiotic
administration induced profound changes to gut bacteria
that translated into changes in fungal abundance that
lasted until the end of our study period. Indeed, these
results must be considered with caution, as we did not
perform quantitative estimations of bacterial and fungal
abundances. In most cases, relative abundance estima-
tion does not allow inference of true direction of change
[47]. For quantification, bacterial cells are counted by
flow cytometry in addition to DNA sequencing or qPCR
[47, 48]. However, broad-spectrum antibiotics decrease
bacterial cell counts by 3 orders of magnitude [47]. We
estimated bacterial growth in situ to show that bacterial
growth was significantly impaired at the community
level. Hence, significant decrease in relative abundance
of species will likely be reflected in true abundance as
well. In future work, increasing the number of study
subjects will help to increase certainty in and resolution
of the findings.

One of the largest knowledge gaps about the basic
biology of gut microbial balance is the lack of compre-
hensive functional analyses. Metatranscriptome studies
have found both more [20] and less [49] uniformity in
individual participants’ profiles compared to respective
metagenomes. Despite minor changes in beta diversity,
we found no significant changes induced by antibiotic
treatment in gene family alpha diversity, species contri-
bution, or transcriptional activity of metabolic pathways.
This result was most likely due to high variability in the
metatranscriptome, as observed previously in healthy
humans [20]. However, fungal abundance and bacterial
growth may have influenced one another because mu-
tual relations between fungal abundances and expression
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of bacterial functions for growth were inferred, especially
during treatment. Because these patterns were not as
pronounced before and after treatment, we identified
antibiotic administration as the main driver of this
change.

Understanding and finding microbial mediators of fun-
gal pathogens may help to improve antifungal treat-
ments. We focused our study on C. albicans, testing
in vitro if growth was affected by compounds produced
by two bacterial species, B. eggerthii and O. splanchnicus.
Although the supernatant of each bacterium was used in
combination with optimal C. albicans growth medium,
the supernatants inhibited C. albicans growth consider-
ably. Such a condition is plausible for the lower human
intestine, because we expect most easily metabolizable
compounds, e.g. carbohydrates, to be absorbed by the
small intestine. Furthermore, the two species may be
physically separated in the gut lumen. Some of the me-
tabolites with clear growth reduction to C. albicans were
found in bacterial supernatants. However, we cannot ex-
clude potential promoting effects of other bacteria that
could occur in the same vicinity.

A decline in gut bile acids and SCFA is linked to dis-
ease states [50, 51], but cause-effect mechanisms are less
understood. We identified five metabolites that naturally
occur in the human gut to effectively inhibit growth
and/or lower hyphae formation, a key attribute of C.
albicans virulence [52]. Acetate is a prototypical SCFA
that dampens the immune response at higher concentra-
tions [53]. The SCFA propionate plays an important role
in immune regulation [54]. Lithocholate is a secondary
bile acid and such secondary bile acids may inhibit C.
albicans growth [50]. Glutathione is an antioxidant that
dampens cell damage [55]. Cis-5-dodecenoic acid sup-
pressed hyphae formation entirely. A similar compound,
cis-2-dodecenoic acid, is produced by Burkholderia ceno-
cepacia and strongly interferes with C. albicans growth
[56, 57]. In contrast to previous studies [39, 51] we also
show that acetate, 5-dodecenoic acid, and propionate
also significantly reduced C. albicans-mediated host cell
damage in vitro. These compounds could also support
the growth of fungal C. albicans competitors. However,
a correlation analysis between these metabolites and
multiple different Saccharomyces, Penicillium, and As-
pergillus spp. did not indicate that. Nevertheless, this
needs to be experimentally verified in future work.

Several limitations should be highlighted. Observing
gut bacterial and fungi concomitantly is difficult as long
as bacterial and fungal abundances are estimated using
two independent sequencing technologies. Improve-
ments in correlation methods mitigate some of the
resulting problems. Still, our correlation results regard-
ing inter-kingdom species-species correlation could be
improved in the future. Estimating cell counts per
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kingdom would further help to improve correlation esti-
mates. Our findings are further limited to just the 5 anti-
biotic drugs used. Even though many significant findings
seemed consistent across the drugs, increasing the num-
ber of patients for each drug would help to get more dif-
ferentiated results. When studying mechanistic effects
with respect to C. albicans growth, we could not simu-
late the complexity of the gut community. We aimed to
find metabolic regulators, but the growth of fungi and
bacteria in the gut is certainly based on a combination
of several metabolic factors and environmental condi-
tions. We looked at a variety of aspects from host cell
damage to morphology, but these were still in vitro
findings.

Our results indicated that antibiotic treatment has a
longer-lasting impact on gut fungi than bacteria, driving
fungal communities from mutualism to competition.
This work also advanced MGS methods for resolving
microbiome compositions and interactions. Of potential
clinical relevance, we demonstrate how particular SCFAs
and bile acids produced by gut bacteria restricted human
cell damage from C. albicans but also show other com-
pounds with considerable effects.

Conclusions

Theoretically, bacteria and fungi compete for resources
available on the gut lumen, but they may also support one
another. In this study, we investigated the temporal, con-
comitant changes of gut bacteria and fungi in humans.
We demonstrate that antibacterial drugs have long-term
influence on the human gut mycobiome, driving fungal
communities from mutualism to competition. We further
show how metabolites produced by bacteria such as cis-5-
dodecenoic acid may actively suppress pathogenicity of
opportunistic fungi such as C. albicans. We thereby show
that gut bacterial-fungal interactions are an important
consideration for antibacterial treatment.

Methods

Study design

Human participants

Stool samples were gathered from 14 healthy adults,
aged 18-65 years, from Denmark and Hong Kong. Sam-
ples were collected over 3—4 months. The Danish study
was approved by the local ethics committee in Region
Zealand, Denmark (SJ-383), and the Hong Kong study
was approved by the Institutional Review Board of The
University of Hong Kong/Hospital Authority Hong Kong
West Cluster (UW 17-042). All work was performed in
accordance with the Good Clinical Practice principles
and the Helsinki Declaration. Written informed consent
was obtained from all participants. Patient characteristics
are described in (Suppl. Table 13). Subjects with any of
the exclusion criteria below were not eligible for entry
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into the present study: (i) history of taking antibiotics
over the last 6 months, (ii) receiving systemic antifun-
gals/antifungal mouthwashes or probiotics concurrently,
(iii) patients suffering from immunosuppressive condi-
tions or taking immunosuppressants, and (iv) severe
medical comorbidities requiring frequent hospitalization.
Another cohort of six healthy, untreated individuals
from Canada was acquired from a previous study from
Raymond et al. [58].

Treatment

Of the participants, 12 were treated for 6 days with 1
antibiotic drug out of 5: doxycycline (tetracycline class),
azithromycin (macrolide class), Augmentin (B-lactam
class), ciprofloxacin (quinolone class), and cefuroxime
(B-lactam class). Two untreated participants were used
as controls.

Sampling

From each participant in the clinical study in Denmark,
6 stool samples were obtained: one 15 days before treat-
ment (+1day), two during treatment (days 3 and 5 of
treatment + 1 day), and three at 15, 30, and 90 days after
treatment (+ 1 day). From each participant in the clinical
study in Hong Kong, four stool samples were obtained
at 7 days before treatment (+ 1 day), day 6 of treatment,
and 30 and 90 days after treatment. Collected samples
were aliquoted and stored at — 80° immediately after col-
lection until DNA extraction. Stool samples of control
patients treated with placebo [58] were acquired before,
7 days, and 90 days after treatment.

Metagenomics and metatranscriptomics sequencing

For participants in the clinical study in Denmark, bacter-
ial metagenomics and metatranscriptomics raw data
were obtained from Kang et al. (in preparation). Briefly,
DNA was extracted using a MO BIO PowerMax Soil
DNA Extraction Kit (MO BIO Laboratories, Inc) and
purified with PowerClean Pro DNA Clean-Up Kits (MO
BIO Laboratories, Inc.) according to the manufacturer’s
protocol. For RNA, rRNA was depleted using a Ribo-
Zero Gold rRNA removal kit—Epidemiology (Illumina).
The remaining total RNA was extracted using a MO
BIO PowerMicrobiome™ RNA Isolation Kit (MO BIO
Laboratories, Inc.). RNA and DNA sequencing were per-
formed on an Illumina HiSeq 2000 (PE125). For partici-
pants in the clinical study in Hong Kong, bacterial DNA
and RNA were extracted from 200 mg aliquots of frozen
stool by Beijing Genome Institute (BGI). DNA was ex-
tracted using an E.Z.N.A.° Stool DNA Kit according to
the manufacturer’s protocol. For RNA, rRNA was de-
pleted using a Ribo-Zero™ Magnetic Kit. The remaining
total RNA was extracted using a RiboPure-Yeast Kit. All
samples were sequenced on an Illumina HiSeq 4000
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platform (Illumina, San Diego, California, USA; paired-
end, insert size 350 bp, read length 150 bp for DNA and
100 bp for RNA).

Internal transcribed spacer sequencing

All stool samples from both cohorts were processed by
Novogene for internal transcribed spacer (ITS) sequen-
cing. DNA was extracted using the following protocol:
Stool samples were thoroughly mixed with 900 uL of
CTAB lysis buffer. All samples were incubated at 65 °C
for 60 min before being centrifuged at 12000xg for 5 min
at 4°C. Supernatants were transferred to fresh 2-mL
microcentrifuge tubes and 900 puL of phenol:chloroform:
isoamyl alcohol (25:24:1, pH = 6.7; Sigma-Aldrich) was
added for each extraction. Samples were mixed thor-
oughly prior to being incubated at room temperature for
10 min. Phase separation occurred by centrifugation at
12,000xg for 15min at 4°C, and the upper aqueous
phase was re-extracted with a further 900 uL of phenol:
chloroform:isoamyl alcohol. Next, samples were centri-
fuged at 12,000xg for 10 min at 4°C, and the upper
aqueous phases were transferred to fresh 2-mL micro-
centrifuge tubes. The final extraction was performed
with 900 uL. of chloroform:isoamyl alcohol (24:1), and
layer separation occurred by centrifugation at 12,000xg
for 15 min at 4 °C. Precipitation of DNA was achieved by
adding the upper phase from the last extraction step to
450 uL of isopropanol (Sigma-Aldrich) containing 50 uL
of 7.5 M ammonium acetate (Fisher). Samples were in-
cubated at —20°C overnight, although shorter incuba-
tions (1h) produced lower DNA yields. Samples were
centrifuged at 7500xg for 10 min at 4 °C, and superna-
tants were discarded. Finally, DNA pellets were washed
three times in 1 mL of 70% (v/v) ethanol (Fisher). The
final pellet was air-dried and re-suspended in 200 uL of
75 mM TE buffer (pH = 8.0; Sigma-Aldrich). The result-
ing fungal sequences were amplified using ITS2-F: 5’
GCATCGATGAAGAACGCAGC-3" and ITS2-R: 5’
TCCTCCGCTTATTGATATGC-3" primers [59, 60].
ITS2 amplicons were generated in three steps by PCR
with 38cycles: 98°C 10s, 59°C 10s, and 72°C 30s
followed by sequencing on the Illumina HiSeq platform
(2 x 250 bp, Novogen, China).

Metabolomics

For 4 participants, bile acid profiles and MicrobioMET
profiles were assessed by Metabo-Profile (Shanghai,
China) using aliquots of frozen stool. For bile acid pro-
files, bile acid-free matrix (BAFM) was obtained using
the charcoal-stripping protocol. Calibrators and quality
controls were prepared for the BAFM and processed as
for extraction of bile acids from stool samples. About 10
mg prechilled zirconium oxide beads were added to 10
mg stool with 15 pl ultrapure water. To each sample, a
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200-pl aliquot of prechilled acetonitrile/methanol con-
taining 10 internal standards was added for
homogenization. After centrifugation at 13,500 rpm and
4.°C for 20 min, 50 pl supernatant was transferred to 96-
well plates. Acetonitrile/water (150 ul) was added for
gentle shaking for 5 min before injection into an ultra-
performance liquid chromatography column coupled to
tandem mass spectrometry (UPLC-MS/MS) system to
quantitate bile acids.

MicrobioMET profiles including aromatic phenols and
indoles, phenolic acids, short-chain fatty acids and
branched-chain amino acids, amino acids, and organic
acids were quantitated using gas chromatography
coupled to time-of-flight mass spectrometer (GC-
TOEMS). Stool aliquots (50 mg) were homogenized with
300 ul NaOH (1 M) solution using a homogenizer and
centrifuged at 13,500 rpm and 4 °C for 20 min. Superna-
tants (200 ul) were transferred into autosampler vials
and residue extracted with 200 ul cold methanol. After a
second homogenization and centrifugation, 167 pl super-
natant was combined with the first supernatant in the
autosampler vial. Extracts were capped and used for au-
tomated sample derivatization by a robotic multipurpose
sample MPS2 with dual heads (Gerstel, Muehlheim,
Germany). Samples pre-treated with sodium sulfate were
shaken at 1500 rpm and 4 °C for 20 min and transferred
to capped empty autosampler vials for the GC-TOFMS.

Data processing

Quality control of sequence data

Quality control of raw reads (DNA, RNA) used a previ-
ously described pipeline [61]. Adapter sequences, low-
quality bases (Q < 20), duplicated reads, reads shorter than
75bp and reads mapping to the human genome with 95%
coverage were filtered out. Computational scripts are at
https://github.com/TingtZHENG/VirMiner/.

In situ bacterial growth rate estimation

Quality controlled FASTQ samples were sub-sampled to
2 million reads per sample. GRiD version 1.3 [25] was
used with the corresponding stool database on sub-
sampled samples to assess the growth bacterial strains.
Default parameters were used but with minimum cover-
age threshold of 0.5 in order to investigate growth rates
for different thresholds. After investigating the results,
and as suggested by the GRiD authors, we continued
with the growth estimates for strains with coverage 1.0
or higher. Statistical testing of (a) median growth rates
and (b) the number of growing species was performed
with a Wilcoxon signed-rank test. Normalized effect size
r was estimated using the R package “rcompanion” and
its function “wilcoxonPairedR”.
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Abundance profiling

HUMAnNN2 [19] version 0.11.1 was used to estimate
gene family abundances in metagenomic DNA and RNA
samples. Resulting reads per kilo-base (RPK) for gene
family abundances at species level (including unclassified
taxa) were further normalized by counts per million
(CPM), resulting in a transcripts per kilo-base million
(TPKM) like normalization.

PIPITS pipeline [21] version 1.4.5 was used for ITS
with default parameters including quality filtering,
read-pair merging, ITS2 filtering, and chimaera re-
moval. Remaining reads were binned based on 97%
similarity as operational taxonomic unit and aligned
to the UNITE fungi database using Mothur classifier
[22]. For further downstream analysis, all samples
were normalized by cumulative sum scaling using
MetagenomeSeq [62].

For bile acid profiles, raw data from UPLC-MS/MS
were processed using QuanMET software (v1.0, Metabo-
Profile) for peak integration, calibration and quantitation
for each bile acid. The analyte concentration of un-
known bile acid was calculated using a calibration curve.

For MicrobioMET profiles, raw data from the GC-
TOFMS were processed using proprietary software
XploreMET (v2.0, Metabo-Profile) for automatic base-
line denosing, smoothing, peak picking, and peak signal
alignment. MS-based quantitative metabolomics deter-
mined the concentration of unknown metabolites by
comparing the unknown to a calibration curve. Abun-
dance of MirobioMET profiles was calculated to
minimize large individual variations in metabolites.

Metagenomic sequences from HUMANnN2 profiles
TPKM-normalized gene family abundances from DNA
were clustered using mgs-canopy version 1.0 software
(https://anaconda.org/bioconda/mgs-canopy). We used
standard parameters except for a Pearson correlation co-
efficient cut-off of 0.95 instead of the default 0.9. Gene
family clusters with at least 700 genes were considered
metagenomic sequences (MGS). Taxonomic annotation
of MGS used species annotation information available
for each gene family. We calculated contributions of
each species to an MGS (including unclassified taxa). An
MGS was annotated to species level using the largest
gene family distribution if the gene contribution of that
species was at least 51% and the second largest species
(a) was “unclassified” or (b) contributed at most 10%.
MGS with more than 90% gene contribution from the
same species were considered “pure” or “unambiguous”.
Using a more stringent species assignment than the ori-
ginal method [29], from a total of 213 MGS, we obtained
80 with species-level assignment (Suppl. Table 6).
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Genomic strains from MGS

MGS with species assignments were processed independ-
ently. Reads that (1) contributed to the abundance of an
MGS, and (2) mapped to the inferred species (based on
ChocoPhlAn reference [19]) were extracted. We used
PanPhlAn [38] version 1.2.1.3 to create species-specific
pangenomes based on reference genomes from the
National Center for Biotechnology Information (Suppl.
Table 14), mapped reads against the species pangenome,
and calculated per-gene per-reference profiles. Gene
abundance was normalized to reads per base. A gene was
covered sufficiently if it had at least 0.5 reads per base. We
accepted a strain reference if: (1) at least 90% of genes in
the MGS were found to have sufficient coverage, and (2)
the reference had the highest number of covered genes.
For experimental verification, we considered using a com-
mercially available strain if the number of covered genes
was at most 1% less than the best-fitting strain.

Diversity analysis

Diversity analysis of fungal and bacterial communities was
performed in R version 3.6.1 using the package vegan [63]
version 2.5-5. Testing for significant differences in alpha
diversity between time points was performed using a two-
sided Wilcoxon signed-rank test. Resulting p values were
adjusted for multiple testing using FDR. UniFrac metrics
measured beta diversity by accounting for phylogenetic
similarities of different species. Weighted UniFrac gives
the most importance to dominant species. Unweighted
UniFrac does not consider abundance. Generalized
UniFrac with a = 50% gives the most weight to moderately
abundant species [64] and the generalized UniFrac with a
= 75% to species with abundance between median and
dominant levels.

Transcriptional activity

Relative abundances using DNA and RNA were normal-
ized to transcripts per million. Let f denote a gene or
pathway. The transcriptional activity of f is defined as
the TPKM-normalized RNA abundance of f divided by
the TPKM-normalized DNA abundance of f.

Core metatranscriptome

The core metatranscriptome was described in [20].
Briefly, we used MetaCyc pathway relative abundances
as generated by HUMANN2 for both DNA and RNA.
We calculated transcriptional activity for each pathway.
The core metatranscriptome was defined as the set of
pathways with a sample prevalence of at least 80% with
variable metatranscriptome having prevalence of 30 to
80%. Pathways with less than 30% prevalence were
ignored.
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Contributional alpha diversity

We followed the procedure in [26], with some excep-
tions. For each MetaCyc pathway (PWY), the contribu-
tion of species to the pathway was determined.
Ecological alpha diversity measures (Shannon and Simp-
son) were applied per sample and separately using DNA
and RNA data. Mean diversity per sample was used to
test for significant differences between time points using
pairwise two-sided signed Wilcoxon tests. Resulting p
values were corrected for multiple testing using false dis-
covery rate (FDR).

Statistics for MGS and ITS abundance

We used MetagenomeSeq [62] version 1.22.0 with a
zero-inflated Gaussian mixture model. Following the
MetagenomeSeq vignette, CSS normalization was ap-
plied on relative abundance data. All possible pairwise
tests between the different sampling time points were
performed (baseline, DT, EPT, and LPT time points).
We controlled for patient-wise differences when pos-
sible. For MGS, D2 and D4 were excluded to improve
signal quality. A 15% prevalence filter was used for each
test independently. Controlling for multiple testing was
performed on p values using FDR.

Two-way PERMANOVA testing

Stool samples from the same participant were statisti-
cally dependent. To test for significant differences in
means of beta diversity between different time points,
two-way permutational analyses of variance (PERM
ANOVA) were performed using “subject id” as covariate
and “sample time point” as second independent variable.
We performed tests on beta diversity matrices using the
function “adonis” as implemented in R package vegan
with 9999 permutations. We reported F values, R*, and p
values for “sample time point”. P values from pairwise
PERMANOVA tests were corrected for multiple testing
using FDR.

Compositionality tests

We implemented a compositionality test from Palleja
et al. [27]. Briefly, we used the test to address the issue
of false-positive and false-negative findings in compos-
itional data [65]. We accepted significant findings for a
species based on relative abundance only if they would
still be significant if other species were removed from
the abundance table. Therefore, if one species was re-
moved, the data were total-sum normalized and p values
calculated. The procedure was repeated for all species.
The final p value for a species was determined using the
highest calculated p value. Thus, a species could not be-
come significant because of depletion or inflation of an-
other dominant species. Since this test was very
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conservative, we used a higher g value of 0.1 to decide
significance to avoid overlooking potential findings.

Correlation analyses using stool metabolite abundance
To identify metabolites with a potential effect on Candida,
Saccharomyces, Penicillium, and Aspergillus spp., we cal-
culated Spearman’s correlations for total-sum scaling
(TSS) ITS abundance and both bile acid and MicroMET
profiles. To account for zero-inflation, we considered only
samples with nonzero abundance of Candida albicans (5
samples). We then considered all significant correlations
(p < 0.05) with an absolute correlation of at least 60%.

To identify direct or indict bacterial producers of the
metabolites, total-sum scaled MGS abundances were
correlated with log2 transformed metabolites abun-
dances. Correlation was inferred using sparse partial
least squared analysis (sPLS) by utilizing relevance vec-
tors (R package mixOmics [30]).

Co-abundance networks

Co-abundance networks were created based on total-
sum-normalized data using BAnOCC [31]. Significance
of an edge was determined as described [20]. For poster-
ior inference, we used the 95% credible interval. An edge
was therefore considered significant if the corresponding
95% credible interval did not contain zero. Only signifi-
cant correlations with an absolute estimated coefficient
of at least 30% were used for analysis. Significant
changes in network structure between any two time
points were determined using Wilcoxon signed-rank
tests on node degree. Effect sizes are reported in terms
of a standardized effect size analogous to the one used
for the Mann-Whitney test, r = z/+/n, where z is the z-
statistic of the paired test and # is the number of obser-
vations. r values are analogous to Pearson correlation
coefficients. Hence, r ranges from — 1 (100% decrease) to
1 (100% increase). Formula and implementation can be
found in the R package “rcompanion”.

Fungal species co-abundance network

TSS-normalized operational taxonomic unit (OTU) abun-
dances based on ITS2 data were used. OTUs detected in
less than 10% of samples were removed. BAnOCC was ex-
ecuted with 5 chains, 5000 iterations, and 1000 warmup
cycles to reach convergence. BANOCC was used as de-
scribed above.

MGS-ITS network with BAnOCC

MGS and ITS relative abundances were independently
total-sum normalized. Only species measured in 25% of
samples were used further. Abundances of less prevalent
species were summed per sample into a group called
“other” to maintain library sizes. MGS and ITS features
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abundances were combined and

BAnOCC as described above.

analysed using

RNA-PWY-ITS network with BAnOCC

RNA abundances of PWY and ITS were independently
total-sum normalized. A 50% samples prevalence filter
was applied to make this computation feasible and de-
crease false-positive rate. Abundances of less prevalent
features were summed per sample into a group called
“other”. BAnOCC was used as described above.

Supernatant experiments

Strains and culture conditions

Odoribacter splanchnicus (DSM20712), Bacteroides
eggerthii (DSM20697), C. albicans (SC5314/ ATCC
MYA-2876), C. albicans (ATCC 10231), and C. albicans
(ATCC 18804) were grown at 37°C under anaerobic
conditions (anaerobic gas mixture, 95% N,, and 5% H,)
in pre-reduced modified Gifu anaerobic media (mGAM,;
Nissui Pharmaceutical Co. Ltd.) broth for liquid cultures
or mGAM broth supplemented with agar (Nissui
Pharmaceutical Co. Ltd.) for growth on plates.

Sterile bacterial supernatants

Bacterial strains grown for 48 h in mGAM broth were
subcultured 1:50 in fresh mGAM broth and grown for
48 h in anaerobic conditions at 37 °C. Bacterial cultures
were spun down at 11,000xg for 5min. Supernatants
were carefully removed and filtered through 0.2-puM syr-
inge filters to remove bacteria in suspension.

Supernatant growth inhibition assays

C. albicans growth rates were analysed in 200 pl liquid
mGAM with 50% or 100% sterile bacterial supernatant
added. C. albicans inoculations were at 1:1000 from an
overnight culture grown in aerobic conditions at 37 °C.
Cultures were in 96-well microtiter plates at 37 °C with
orbital shaking 365cpm (2mm). Cell densities were
measured every 10min at optical density 600 nm
(OD600) using a microtiter reader (BioTek ELx800).
Growth rates were calculated by plotting the log OD
measurements in log phase and calculating slopes for
timepoints in log phase where 7> was closest to 1, using
at least 12 time points (2 h apart).

Supernatant metabolite assays

Analysis of SCFA in samples was carried out by MS-
Omics as follows. Samples were acidified using hydro-
chloride acid, and deuterium labelled internal standards
where added. All samples were analysed in a randomized
order. Analysis was performed using a high polarity col-
umn (Zebron™ ZB-FFAP, GC Cap. Column 30 m x 0.25
mm x 0.25pm) installed in a GC (7890B, Agilent)
coupled with a quadropole detector (5977B, Agilent).
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The system was controlled by ChemStation (Agilent).
Raw data was converted to netCDF format using
Chemstation (Agilent), before the data was imported
and processed in Matlab R2014b (Mathworks, Inc.)
using the PARADISe software described by Johnsen
et. al [68].

Other compounds such as bile acids were analysed
using MS/MS. The analysis was carried out using a
Thermo Scientific Vanquish LC coupled to Thermo Q
Exactive HF MS. An electrospray ionization interface
was used as ionization source. Analysis was performed
in negative and positive ionization mode. The UPLC was
performed using a slightly modified version of the proto-
col described by Catalin et al. (UPLC/MS Monitoring of
Water-Soluble Vitamin Bs in Cell Culture Media in Mi-
nutes, Water Application note 2011, 720004042en). Peak
areas were extracted using Compound Discoverer 2.0
(Thermo Scientific). Identification of compounds were
performed at four levels: level 1—identification by reten-
tion times (compared against in-house authentic stan-
dards), accurate mass (with an accepted deviation of 3
ppm), and MS/MS spectra; level 2a—identification by re-
tention times (compared against in-house authentic
standards), accurate mass (with an accepted deviation of
3 ppm); level 2b—identification by accurate mass (with
an accepted deviation of 3 ppm), and MS/MS spectra;
level 3—identification by accurate mass alone (with an
accepted deviation of 3 ppm).

C. albicans growth inhibition by metabolites

Metabolites were acquired from the companies Sigma-
Aldrich, Merck KGaA, and Roth. More specific details
can be found in Suppl. Table 15.

C. albicans growth curves

Dilution series of metabolites in water were started at
concentrations approximately 10-fold below maximum
solubility in water where applicable (Suppl. Table 16).
Dilutions were in synthetic SD medium (1x yeast nitro-
gen base, 2% glucose, 0.5% NH4SO,). C. albicans was
grown overnight in YPD (1% yeast extract, 2 % peptone,
2 % glucose), washed 3x in sterile water, and inoculated
at 1:100 (ODggo = 0.2). Absorbance was measured every
15 min with an infinite M200pro microwell plate reader
(Tecan, Austria) set to 30°C with intermittent shaking
(10s orbital shaking before each measurement). Gener-
ation times were calculated from the obtained triplicate
growth curves.

Host cell damage assays

To determine the influence of metabolites on the general
capacity of C. albicans to cause host cell damage, we
used an established epithelial cell model based on the
vaginal epithelial cell line A431. A431 were grown in
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RPMI media containing 10% foetal bovine serum (FBS),
and 200 pl cells at 10° cells/ml were seeded into 96-well
plates and incubated at 37 °C, 5% CO,. After 48 h, cells
were washed with 1x PBS, and 100 pl compound at indi-
cated concentrations was added, followed by 100 pl Can-
dida cells at multiplicity of infection 1. Incubation
continued under the same conditions for 24 h. Basal lac-
tate dehydrogenase (LDH) release (low control) was de-
termined with 200 ul RPMI, and maximum LDH release
(high control) determined by addition of 100 ul 0.5 %
Triton X-100 to cells in 100 pl RPMI. Plate were centri-
fuged at 250xg for 10 min and supernatants were re-
moved and diluted 1:10 and mixed with 100 pl freshly
prepared LDH assay mix (Roche). After 25 min at room
temperature in the dark, LDH activity was determined
with a microplate reader (Tecan infinite M200) as ab-
sorbance (A) at 492 nm, with 660 nm as a reference.
Damage was calculated as (Asampie = Alow)/(Ahigh = Alow)-

C. albicans morphology

The effect of metabolites on C. albicans morphology
was tested at all concentrations used in cell damage as-
says. Metabolites were diluted in 250 ul RPMI medium
with 10% FBS and added to 250 ul C. albicans in RPMI
in 24-well plates to indicated concentrations. Plates were
incubated at 37 °C and 5% CO, for 4 h to induce hyphae
formation. Medium was removed and cells fixed with
Histofix 4% formaldehyde solution. Morphology was
evaluated using an inverse microscope (Axio Zeiss Vert.
Al) to differentiate yeasts, hyphae, and pseudohyphae.

Pairwise co-cultivation experiments

Interactions between C. albicans and B. eggerthii and O.
splanchnicus were assayed via pairwise cultivations. C.
albicans cell counts were compared to control condi-
tions of cultivation without bacteria.

Fungal and bacterial cells were grown anaerobically at
37°C for up to 48 h in mGAM and used as inocula for
pairwise experiments. Inocula biomasses were estimated
via OD600 and adjusted to 1.0 by diluting in appropriate
media. Inocula were transferred to microplates contain-
ing the same media to a final OD600 of 0.01. Ratios of
fungal to bacteria cells were 1:1. Microplates were incu-
bated at 37 °C statically under anaerobic conditions. Cell
counts from inocula were resolved, prior to the co-
cultivation experiments, via flow cytometry (BD LSRFor-
tessa, BD Biosciences, Franklin Lakes, NJ, USA).

Five microplates were prepared using the same inocu-
lum. Microplates were removed from the anaerobic
chamber every 5h (0, 5, 10, 15, and 20h cultivation).
Cells were immediately fixed in 2% formaldehyde for 15
min at room temperature by mixing an equal amount of
sample volume and 4% formaldehyde (Sigma-Aldrich,
Saint Louis, MI, USA) [66, 67]. After fixing, total C.
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albicans cells were counted via flow cytometry (BD
LSRFortessa, BD Biosciences, Franklin Lakes, NJ, USA).
Experiments were performed in triplicate.
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