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Abstract	

Antibiotic	combinations	are	considered	a	relevant	strategy	to	tackle	the	global	antibiotic	

resistance	crisis	since	they	are	believed	to	increase	treatment	efficacy	and	reduce	

resistance	evolution	(World	Health	Organization	and	Global	Tuberculosis	Programme,	

2016).	However,	studies	of	the	evolution	of	bacterial	resistance	to	combination	therapy	

have	focused	on	a	limited	number	of	drugs	and	have	provided	contradictory	results	

(Hegreness	et	al.,	2008;	Lipsitch	and	Levin,	1997;	Munck	et	al.,	2014).	To	address	this	

gap	in	our	understanding,	we	performed	a	large-scale	laboratory	evolution	experiment,	

adapting	8	replicate	lineages	of	Escherichia	coli	to	a	diverse	set	of	22	different	antibiotics	

and	33	antibiotic	pairs.	We	found	that	combination	therapy	significantly	limits	the	

evolution	of	de	novo	resistance	in	E.	coli,	yet	different	drug	combinations	vary	

substantially	in	their	propensity	to	select	for	resistance.	In	contrast	to	current	theories,	

the	phenotypic	features	of	drug	pairs	are	weak	predictors	of	resistance	evolution.	

Instead,	the	resistance	evolution	is	driven	by	the	relationship	between	the	evolutionary	

trajectories	that	lead	to	resistance	to	a	drug	combination	and	those	that	lead	to	

resistance	to	the	component	drugs.	Drug	combinations	requiring	a	novel	genetic	

response	from	target	bacteria	compared	to	the	individual	component	drugs	significantly	

reduce	resistance	evolution.	These	data	support	combination	therapy	as	a	treatment	

option	to	decelerate	resistance	evolution	and	provide	a	novel	framework	for	selecting	

optimized	drug	combinations	based	on	bacterial	evolutionary	responses.		 	
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Introduction	

The	prevalence	of	antibiotic	resistance	has	become	a	global	health	concern,	limiting	the	

efficacy	of	standard	treatments	for	acute	and	chronic	bacterial	infections	(Ventola,	

2015).		As	the	development	of	novel	antibiotics	is	expensive	in	terms	of	time	and	

resources	(Luepke	et	al.,	2017),	it	is	important	to	use	currently	available	drugs	in	the	

best	possible	way	to	decelerate	antibiotic	resistance	evolution	and	to	maximize	positive	

treatment	outcomes.	Empiric	combination	therapy	is	believed	to	improve	treatment	

outcomes	via	increased	potency	and	reduced	evolution	of	drug	resistance(	Bantar	et	al.,	

2004;	Blomberg	et	al.,	2001).	However,	the	clinical	benefit	of	combination	therapy	

remains	controversial	(Bantar	et	al.,	2004;	Bliziotis	et	al.,	2005;	Leibovici	et	al.,	1997;	

Lipscey	et	al.,	2018;	Paul,	2014;	Skorup	et	al.,	2014;	Tepekule	et	al.,	2017).	The	disparate	

results	might	be	explained	by	an	incomplete	understanding	of	the	factors	that	drive	the	

evolution	of	resistance	to	combination	therapy.		

	

Drug	combinations	have	been	mainly	studied	in	regards	to	phenotypic	characteristics	

such	as	drug	interaction	(Barbosa	et	al.,	2018;	Baym	et	al.,	2016;	Hegreness	et	al.,	2008;	

Munck	et	al.,	2014;	Torella	et	al.,	2010)	or	collateral	drug	responses	(de	Evgrafov	et	al.,	

2015;	Munck	et	al.,	2014).	Drug	interactions	describe	the	combined	effect	of	multiple	

drugs	relative	to	the	sum	of	their	individual	effects	(additive,	synergistic	and	

antagonistic)(Wong,	2017).	Collateral	drug	responses	occur	when	a	bacterium	that	

evolved	resistance	to	a	drug	displays	higher	susceptibility	(collateral	sensitivity)	or	

increased	resistance	(collateral	resistance)	to	other	agents	(Beutner	et	al.,	1963;	

Szybalski	and	Bryson,	1952).	These	different	phenotypic	characteristics	have	been	

correlated	with	resistance	evolution	in	multiple	studies	with	contradictory	results	

ranging	from	accelerated	to	decelerated	evolution	(Barbosa	et	al.,	2018;	Hegreness	et	al.,	

2008;	Munck	et	al.,	2014).	

	

In	addition,	the	genetics	underlying	the	resistance	evolution	towards	drug	combinations	

have	only	been	studied	for	a	very	limited	number	of	drug	pairs	(de	Evgrafov	et	al.,	2015;	

Munck	et	al.,	2014;	Suzuki	et	al.,	2015).	Two	small-scale	studies	identified	that	

mutations	linked	to	collateral	sensitivity	were	less	prominent	in	the	combination	of	

collateral	sensitive	drugs	(Munck	et	al.,	2014;	Suzuki	et	al.,	2015),	while	another	study	

found	that	the	types	of	mutations	are	different	in	drug	pair	evolved	lineages	compared	

to	single	drug	evolved	ones	(Laehnemann	et	al.,	2014).	Yet,	the	genetic	trajectories	

towards	drug	combinations	have	not	been	characterized	systematically	under	

controlled	conditions	along	with	their	potential	to	predict	resistance	evolution.	
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In	order	to	address	this	lack	of	knowledge	we	conducted	a	systematic	high-throughput	

adaptive	laboratory	evolution	experiment	for	Escherichia	coli,	an	important	model	

organism	and	human	pathogen	(Bodilsen	et	al.,	2018).	The	large	number	of	replicate	

lineages	and	the	broad	range	of	drugs	tested	combined	with	a	systematic	assessment	of	

the	evolvability	allowed	us	to	analyze	the	phenotypic	and	genotypic	evolutionary	

responses	to	single	and	combinatorial	drug	exposure.	Based	on	this	comprehensive	

dataset	we	identified	for	the	first	time	distinct	patterns	in	the	genetic	responses	towards	

drug	combinations.	Moreover,	these	genetic	trajectories	are	reliable	predictors	for	the	

evolvability	of	antibiotic	resistance.		 	
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Results	

Resistance	evolution	towards	a	diverse	set	of	antibiotic	combinations		

To	identify	the	underlying	features	that	drive	the	evolution	of	resistance	to	combination	

therapy,	we	adapted	genetically	barcoded	replicate	lineages	(Jahn	et	al.,	2018)	of	the	

well-studied	model	organism	Escherichia	coli	K12	MG1655	to	a	diverse	set	of	22	

different	antibiotics	and	33	different	antibiotic	pairs	(Table	S1,	Table	S2).	These	drugs,	

including	both	bactericidal	(68.18%)	and	bacteriostatic	(31.81%)	drugs,	covered	11	

different	drug	classes	and	targeted	6	different	bacterial	processes	(Table	S2,	Fig.	1a).	

Moreover,	we	assessed	the	phenotypic	features	of	the	drug	pairs.	First,	we	classified	the	

drug	combinations	based	on	the	drug	interaction	and	found	that	they	covered	all	three	

possible	drug	interactions:	synergistic	(34.4%),	additive	(28.1%)	and	antagonistic	

(37.5%)	(Fig.	1b).	The	classification	was	done	by	measuring	the	drug	concentration	that	

resulted	in	a	90%	growth-reduction	(IC90)	of	the	wild	type	(WT)	compared	to	WT	

growth	in	media	only	for	all	single	antibiotics	and	for	the	antibiotics	in	combination.	

Based	on	these	values	the	fractional	inhibitory	concentration	index	was	calculated	(FICI)	

(Tyers	and	Wright,	2019).	While	different	methods	to	calculate	drug	interactions	are	

used	that	impact	the	classification	of	drug	interactions,	we	decided	to	use	a	Loewe-

additivity	model	based	on	the	IC90	(which	is	similar	to	the	minimal	inhibitory	

concentration	(MIC))	as	this	is	commonly	reported	in	scientific	studies	and	allows	best	

possible	comparison	of	our	study	with	the	existing	literature	(Gonzales	et	al.,	2015;	

Minato	et	al.,	2018;	Munck	et	al.,	2014;	Stokes	et	al.,	2017;	Tyers	and	Wright,	2019).	

Further,	we	defined	cut-offs	for	the	FICI	(Materials	and	Methods)	to	distinguish	between	

the	drug	interactions:	antagonistic	(ANT,	FICI	>	1.5),	additive	(ADD,	FICI	=	0.75-1.5)	and	

synergistic	(SYN,	FICI	<	0.75),	
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Figure	1:	Drug	properties	and	experimental	setup.	a	Characteristics	of	the	drugs	chosen	

for	adaptive	laboratory	evolution.	The	antibiotics	were	either	bactericidal	or	

bacteriostatic	and	covered	multiple	drug	classes	and	six	different	processes	in	the	cell.	

Drugs	chosen	for	the	evolution	in	drug	pairs	are	depicted	in	bold.	B	The	drug	pairs,	

shown	in	ascending	order	of	the	fractional	inhibitory	concentration	index	(FICI),	exhibit	

various	phenotypic	interactions:	synergy	(SYN,	FICI	<	0.75,	green),	additivity	(ADD,	FICI	

=	0.75-1.5,	white)	and	antagonism	(ANT,	FICI	>	1.5,	blue);	collateral	resistance	(CR,	

orange),	a	neutral	collateral	response	(N,	white)	and	collateral	sensitivity	(CS,	

turquoise).	The	arrows	show	the	fold	increase	(orange,	CR	>	2	*	median	ancestral	wild	

type	(WT)	IC90)	or	decrease	(turquoise,	CS	<	0.5	*	median	WT	IC90)	in	resistance	

compared	to	the	WT.	The	direction	of	the	arrows	indicates	the	direction	of	the	collateral	

drug	response:	e.g.	lineages	evolved	to	Trimethoprim	display	mild	collateral	resistance	

to	Ciprofloxacin,	while	lineages	evolved	to	Ciprofloxacin	show	mild	collateral	sensitivity	

to	Trimethoprim.	The	space	around	the	arrows	is	colored	based	on	the	classification	of	

the	drug	pairs	as	CR,	CS	or	neutral	according	to	the	collateral	IC90	change	index	of	each	

isolated	biological	replicate.	Definitions	of	antibiotic	abbreviations	can	be	found	in	Table	
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S2.	Definitions	of	the	different	categories	(SYN,	ADD,	ANT,	CS,	CR)	as	well	as	definitions	

of	the	FICI,	IC90	and	collateral	IC90	change	index	can	be	found	in	materials	and	methods.	

The	figure	lists	32	antibiotic	pairs	due	to	the	exclusion	of	the	replicate	lineages	evolved	

to	Sulfamethoxazole-Trimethoprim,	as	Sulfamethoxazole	appeared	unstable	upon	

freezing,	resulting	in	unreliable	resistance	determination.		c	Adaptive	laboratory	

evolution	of	antibiotic	resistance.	Genetically	barcoded	E.	coli	lineages	were	evolved	in	

eight	biological	replicate	lineages	with	22	different	antibiotics	and	33	different	antibiotic	

combinations.	The	replicate	lineages	were	grown	in	96-deep-well-plates	in	1	ml	of	LB	

containing	antibiotic.	Every	22	h,	the	cells	were	transferred	to	a	new	plate	in	a	20-fold	

dilution.	In	addition,	the	optical	density	was	measured	immediately	before	each	

transfer,	and	an	aliquot	of	the	population	was	saved	as	a	glycerol	stock.	The	evolution	of	

resistance	in	each	replicate	lineage	was	monitored	by	measuring	the	IC90	at	day	0,	8,	13	

and	18,	as	indicated	with	stars.	The	evolution	was	started	at	subinhibitory	drug	

concentrations	(25	%	of	the	WT	IC90),	and	the	WT	IC90	was	reached	on	the	7th	day	of	the	

experiment.	The	evolution	experiment	ended	after	18	days,	when	the	WT	IC90	was	

exceeded	by	more	than	10-fold.	Isolated	colonies	were	obtained	from	frozen	endpoints	

and	subsequently	used	for	whole-genome	sequencing	and	susceptibility	testing	to	

multiple	antibiotics.	

	

Resistance	to	these	drugs	and	drug	combinations	was	achieved	via	adaptive	laboratory	

evolution	(Jahn	et	al.,	2017).	Even	though	adaptive	evolution	experiments	simplify	the	

growth	conditions	in	human	hosts,	they	can	capture	clinically	relevant	features	of	

resistance	evolution	(Imamovic	et	al.,	2018).	In	addition,	adaptive	evolution	reduces	the	

complexity	of	resistance	evolution	in	clinical	settings	and	allows	studying	specific	

parameters	systematically	under	controlled	conditions	(Jansen	et	al.,	2013).	We	

performed	the	evolution	experiment	in	a	stepwise	manner	(Jahn	et	al.,	2017),		in	eight	

biological	replicate	lineages	giving	a	total	of	460	lineages	(including	20	LB-only	

controls)	(Fig.	1c,	methods,	antibiotic	concentrations	in	Table	S3).	A	single	isolated	

colony	was	obtained	for	each	revived	endpoint	lineage	for	subsequent	genotypic	and	

phenotypic	characterizations	(Table	S4).	After	the	adaptive	evolution	experiment,	we	

measured	the	IC90	of	all	isolates.	In	order	to	check	whether	the	isolates	were	

representative	for	the	lineage	they	were	obtained	from,	we	calculated	the	difference	

between	the	IC90	of	the	lineages	and	the	IC90	of	the	isolates	derived	from	the	respective	

lineages	and	normalized	it	by	the	lineage	IC90,	similar	to	the	calculation	of	the	Coefficient	

of	variance.	The	median	of	these	indices	was	0.66	indicating	an	acceptable	agreement	

between	isolates	and	lineage	IC90s.	However,	certain	antibiotics	like	beta-lactams	and	
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many	drug	combinations	had	higher	or	lower	lineage	resistance	compared	to	the	

isolates	(Fig.	S1).	This	might	be	the	result	of	different	aspects	such	as	population	

dynamics	(Lee	et	al.,	2010),	inoculum	effect	(Brook,	1989),	tolerance	(Levin-Reisman	et	

al.,	2017)	and	selection	bias	of	the	isolates	due	to	freezing	sensitivity	(Barbosa	et	al.).	

	

We	also	measured	the	IC90	of	all	isolates	adapted	to	single-drugs	towards	all	single	drugs	

used.	The	resulting	data	allowed	us	to	assess	collateral	drug	responses	(Fig.	S2).	

Therefore,	the	drug	pairs	could	be	grouped	based	on	the	collateral	IC90	change	index	into	

one	of	three	categories:	collateral	resistant	(CR,	collateral	IC90	change	index	>	2),	

collateral	sensitive	(CS,	collateral	IC90	change	index	<	0.5)	or	neutral	(N,	collateral	IC90	

change	index	0.5-2).	The	collateral	IC90	change	index	provides	the	average	change	in	fold	

resistance	relative	to	the	WT	between	two	isolates	adapted	to	either	drug	A	or	B	to	the	

respective	other	drug	(Munck	et	al.,	2014).	We	found	that	the	drug	pairs	displayed	all	

possible	collateral	responses	between	the	individual	drugs	constituting	the	pairs	(Fig.	

1b).		

	

Assessment	of	evolutionary	responses	to	combination	therapy	

Before	we	analyzed	the	isolates,	we	also	observed	the	behavior	of	the	entire	populations	

during	the	adaptive	evolution	experiment.	A	majority	(68.4%)	of	the	lineages	adapted	to	

monodrug	exposure	exhibited	stable	growth	throughout	the	evolution	experiments	(chi-

square	test	of	independence,	X2	=	84.742,	p	=	2.2e-16,	df	=	1,	n(Mono)	=	152,	
n(Combination)	=	256).	In	contrast,	most	(59.4%)	of	the	lineages	exposed	to	drug	

combinations	exhibited	declining	OD	values	over	time	(chi-square	test	of	independence,	

X2	=	37.028,	p	=	1.164e-09,	df	=	1,	n(Mono)	=	152,	n(Combination)	=	256)	(Fig.	S3a-c).	

Declining	OD	values	might	indicate	that	the	populations	did	not	evolve	resistance	at	a	

sufficient	pace	to	ensure	survival.	Further,	we	measured	the	resistance	level	of	the	

lineages	at	different	time	points	during	the	experiment.	We	calculated	the	Coefficient	of	

variance	(CV)	of	the	endpoint	IC90	levels	of	the	parallel-evolved	lineages	and	found	a	

significant	(Mann-Whitney	U-test,	p	=		0.003076,	U	=	2552,	two-sided,	confidence	level	=	

0.95)	difference	between	the	variance	of	single-drug	(CV	=	0.388417)	and	drug	pair	(CV	

=	0.6410415)	evolved	lineages.	Usually,	a	higher	degree	of	phenotypic	convergent	

evolution	is	associated	with	a	higher	selection	pressure	and	constrained	evolution	

(MacPherson	and	Nuismer,	2017),	yet	parallel	evolution	is	also	highly	depended	on	

population	size	(Bailey	et	al.,	2015).	As	mentioned	before	drug	pair	evolved	lineages	had	

often	decreasing	population	sizes,	which	might	account	for	the	higher	phenotypic	

variability.	
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Looking	at	the	IC90	data	of	the	lineages	during	the	evolution	experiment,	we	found	that	

after	completion	of	the	evolution	a	majority	(67.8%)	of	the	drug-pair-evolved	replicate	

lineages,	but	a	minority	(23.5%)	of	the	single-drug-evolved	lineages,	only	gained	

resistance	levels	below	the	antibiotic	concentration	they	were	exposed	to	during	the	

adaptive	laboratory	evolution	(chi-square	test	of	independence,	X2	=	73.117,	p	=	2.2e-16,	

df	=	1,	n(Mono)	=	152,	n(Combination)	=	256)	(Fig.	S3d-f).	This	observation	suggests	a	

limited	capacity	of	drug-pair-exposed	lineages	to	evolve	resistance.			

	

Combination	therapy	reduces	resistance	evolution	

To	further	examine	resistance	evolution	we	assessed	the	phenotypes	of	the	isolated	

colonies	from	the	end	point	of	the	evolution	experiment.	We	found	that	isolates	evolved	

to	about	half	of	the	drug	pairs	(15)	displayed	resistance	to	the	drug	pair	and	the	

individual	drugs	constituting	the	pair.	For	the	other	drug	combinations	we	observed	

resistance	to	the	drug	pair	and	only	one	of	the	individual	drugs	(eight	drug	pairs),	only	

to	one	of	the	individual	drugs	(five	drug	pairs)	or	no	resistance	at	all	(four	drug	pairs).	

This	observation	highlights	variable	abilities	to	evolve	resistance	and	different	dynamics	

of	the	drug	pairs	to	select	for	adaptations.		

	

To	shed	light	on	the	factors	that	impact	resistance	evolution,	we	calculated	the	

evolvability	index	for	all	drug	pair-evolved	lineages	(Munck	et	al.,	2014).	The	

evolvability	index	describes	the	final	phenotypic	adaptation	level	relative	to	single-drug-

evolved	isolates	(Munck	et	al.,	2014).	All	the	isolates	except	those	evolved	to	a	

combination	of	ciprofloxacin	and	azithromycin	had	a	median	evolvability	index	less	than	

1,	indicating	that	the	drug-pair-evolved	isolates	became	less	resistant	to	the	two	

individual	drugs	than	the	isolates	evolved	to	these	drugs	alone	(Fig.	2).	In	fact,	for	a	

majority	of	the	drug	pairs	(87.5%),	very	limited	resistance	evolution	was	observed	

(evolvability	index	<	0.5).		

	

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab006/6108108 by D
TU

 Library user on 16 February 2021



	
	
	

	
Figure	2:	Antibiotic	combinations	limit	resistance	evolution.	Distribution	of	the	

evolvability	index	of	the	different	isolates	from	replicate	lineages	each	represented	with	

a	dot	for	each	drug	pair.	Drug	pairs	are	ordered	by	median	evolvability	index.	The	

histogram	displays	a	unimodal	right	skewed	distribution	of	the	isolates	over	the	

evolvability	index.	The	dotted	line	in	the	histogram	indicates	the	median.	Explanations	

for	outliers	are	discussed	in	Table	S5.	

	

These	findings	highlight	that	drug	pairs	in	general	reduce	the	adaptive	potential	of	de	

novo	antibiotic	resistance	evolution	in	E.	coli.	Nevertheless,	E.	coli	evolved	resistance	to	

specific	drug	combinations	to	a	markedly	different	degree.		

	

Phenotypic	features	impact	evolvability	only	marginally	

Prior	studies	have	suggested	that	drug	features	like	synergistic	or	antagonistic	drug	

interactions	or	collateral	drug	responses	play	an	important	role	in	explaining	the	

difference	in	resistance	evolution	toward	drug	combinations	(Barbosa	et	al.,	2018;	

Hegreness	et	al.,	2008;	Munck	et	al.,	2014;	Suzuki	et	al.,	2015)	(Fig.	3a).	We	grouped	the	
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drug	pairs	into	antagonistic,	additive	and	synergistic	based	on	the	FICI.	However,	we	

observed	only	a	minor	contribution	of	synergistic	or	antagonistic	drug	interactions	on	

the	evolvability	of	resistance	(Fig.	3b).	Further,	we	did	not	find	a	correlation	between	

the	FICI	and	the	evolvability	index	(Fig.	3c).	Next,	we	assessed	the	effect	of	collateral	

responses	on	evolution	of	resistance	to	drug	combinations	by	grouping	the	drug	pairs	

based	on	the	collateral	IC90	change	index.	Again,	we	observed	only	a	limited	effect	of	

collateral	responses	on	the	evolvability	index	(Fig.	3d)	and	no	significant	correlation	

between	the	collateral	IC90	change	index	and	the	evolvability	index	(Fig.	3e).	

	

	
Figure	3:	Phenotypic	features	of	drug	combinations	are	weak	predictors	of	the	

evolvability.	ANT	=	antagonistic	drug	pairs;	ADD	=	additive	drug	pairs;	SYN	=	synergistic	

drug	pairs.	CR	=	collateral	resistance;	N	=	neutral;	CS	=	collateral	sensitivity.	a	Schematic	

overview	of	the	different	types	of	drug	interaction	and	collateral	drug	responses.	It	has	

been	hypnotized	previously	that	they	might	impact	the	evolvability	of	drug	

combinations.	bThe	median	evolvability	indices	(±MAD)	for	drug	pairs	grouped	by	the	

FICI	(Mann-Whitney	U-test,	median(ANT)	=	0.29,	n(ANT)	=	83,	median(ADD)	=	0.23,	

n(ADD)	=	71,	median(SYN)	=	0.28,	n(SYN)	=	83,	ANT-ADD:	p	=		0.3251,	U	=	3218.5,	ANT-

SYN:	p	=	0.8806,	U	=	3491.5,	ADD-SYN:	p	=	0.3873,	U	=	3185.5,	Bonferroni	corrected,	
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two-sided,	confidence	level	=	0.95).	c	Scatterplot	of	the	evolvability	index	versus	FICI	

(Pearson	correlation	coefficient	R	=	-0.048,	p	=	0.46).	d	Median	evolvability	indices	

(±MAD)	for	drug	pairs	grouped	by	the	collateral	IC90	change	index	(Mann-Whitney	U-

test,	median(CR)	=	0.36,	n(CR)	=	108,	median(N)	=	0.23,	n(N)	=	110,	median(CS)	=	0.22,	

n(CS)	=	19,	CR-N:	p	=		0.01654,	U	=	7056.5,	CR-CS:	p	=	0.245,	U	=	1198.5,	N-CS:	p	=	

0.7397,	U	=	1095.5,	Bonferroni		corrected,	two-sided,	confidence	level	=	0.95).	e	

Scatterplot	of	the	evolvability	index	versus	the	collateral	IC90	change	index	(Pearson	

correlation	coefficient	R	=	0.074,	p	=	0.25).	

	

Genetic	responses	to	drug	pairs	follow	distinct	patterns	

To	determine	the	genetic	basis	of	resistance	and	to	assess	if	the	genotypes	could	explain	

the	varying	levels	of	evolvability	among	the	different	drug	pairs,	we	performed	whole-

genome	sequencing	on	313	of	the	phenotypically	characterized	isolates	that	exhibited	

phenotypic	resistance	(IC90	>	2-fold	WT	IC90)	after	an	initial	screening	(Table	S6).		In	

total,	we	found	1062	single	nucleotide	variants,	1052	gene	duplications	and	368	

insertions	or	deletions	(Table	S7).	Six	isolates	displayed	a	hypermutator	phenotype	with	

between	21	and	383	mutations.	All	hypermutators	had	a	mutation	in	either	mutS,	mutT	

or	mutD	(dnaQ)	(Table	S7),	which	induce	the	hypermutator	phenotype	(Jolivet-Gougeon	

et	al.,	2011).	On	average,	we	detected	approximately	5	mutations	per	isolate.	The	

number	of	mutations	per	isolate	was	roughly	the	same	between	isolates	adapted	to	a	

single	or	to	multiple	antibiotics	(Fig.	S4).	However,	the	types	of	mutations	differed.	

While	single	nucleotide	polymorphisms	(SNP)	were	the	dominant	response	under	single	

drug	exposure,	gene	duplications	were	most	prevalent	in	drug	pair	evolved	isolates,	as	

reported	before	(Laehnemann	et	al.,	2014).	The	gene	that	was	mutated	the	most	(101	

times	+	15	times	in	the	promoter	region)	was	marR	(Table	S7),	the	regulator	of	the	

multiple	antibiotic	resistance	locus	(Cohen	et	al.	1993),	a	gene	in	which	mutations	can	

induce	a	multidrug	resistance	phenotype	(Woodford	and	Ellington,	2007).	Antibiotic	

resistance	is	facilitated	through	MarR	by	the	transcriptional	regulation	of	at	least	80	

chromosomal	genes	(Pomposiello	et	al.	2001,	Barbosa	et	al.	2000,	Alekshun	et	al.	1997),	

involving	primarily	stress	response	(Alekshun	et	al.	1997)	and	multidrug	efflux	(Keeney	

et	al.	2008).	Multiple	other	mutations	are	also	known	to	be	linked	to	a	multidrug	

resistance	phenotype	and	often	involve	acrB-mediated	efflux	of	the	antibiotic	(Okusu	et	

al.,	1996)	and	have	been	identified	in	this	study	(Table	S7).	The	multidrug	resistance	

induced	through	these	mutations	can	be	illustrated	by	clustering	the	antibiotic	evolved	

isolates	based	on	their	genetic	similarity.	We	calculated	the	genetic	similarity	of	all	

single	drug	evolved	isolates	based	on	the	Jaccard’s	Distance	and	found	that	isolates	
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evolved	to	different	drugs	like	tetracyclines,	chloramphenicol,	beta-lactam	and	

macrolide	antibiotics	clustered	together	(Fig.	S5).	This	finding	highlights	that	resistance	

mechanisms	evolve	that	are	not	necessarily	specific	to	the	mechanism	of	action	of	the	

antibiotic.	In	addition,	the	genetic	similarity	can	also	explain	collateral	resistance	as	

genetic	similarity	and	collateral	resistance	are	positively	correlated	(Fig.	S6).	

	

We	grouped	drug-pair-evolved	isolates	into	four	distinct	genetic	responses	relative	to	

their	genetic	response	towards	their	constituent	drugs	:	(1)	mutations	conferring	

resistance	to	both	constituent	drugs	are	the	same	and	are	selected	by	the	drug	

combination	(Shared	genotype);	(2)	mutations	conferring	resistance	to	both	constituent	

drugs	are	different,	yet	are	both	selected	by	the	drug	combination	(Mixed	genotype);	(3)	

mutations	conferring	resistance	to	both	constituent	drugs	are	different,	yet	only	

mutations	for	one	of	the	constituent	drugs	are	selected	by	the	drug	combination	(One	

Drug	genotype);	or	(4)	mutations	selected	by	the	drug	combination	are	different	from	

those	selected	by	each	of	the	constituent	drugs	(New	genotype)	(Fig.	4a).	To	classify	the	

drug	pairs	into	these	distinct	categories,	we	performed	an	analysis	of	similarities	

(ANOSIM)	based	on	the	mutations	of	each	sequenced	isolate	(Table	S7).	ANOSIM	is	a	

nonparametric	statistical	test	that	is	widely	used	in	ecology	to	identify	differences	

among	ecological	niches	based	on	ranked	dissimilarity	matrices	(Bueno	et	al.,	2018).	

Here,	we	used	mutated	genes	as	features	to	identify	differences	between	various	

adaptation	conditions	instead	of	characteristics	of	an	ecological	niche.		

	

The	Shared	group	contained	three	drug	pairs	for	which	no	significant	genotypic	

differences	(R	<	0.2	and/or	p	>	0.005,	Table	S8)	were	observed	between	single-drug-

evolved	isolates	or	between	single-drug-evolved	isolates	and	drug-pair-evolved	isolates	

(Fig.	4b).	For	example,	key	mutations	found	in	doxycycline-adapted	isolates	were	also	

dominant	in	chloramphenicol-evolved	isolates	as	well	as	isolates	exposed	to	both	drugs	

simultaneously.	All	drug	pairs	belonging	to	the	Shared	group	exhibited	collateral	

resistance	to	each	other	(Fig.	S7),	as	the	genetic	alterations	provide	resistance	to	both	

individual	drugs	as	well	as	to	the	drug	pair.		
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Figure	4:	Drug	pairs	can	be	grouped	in	four	distinct	categories	based	on	their	genotypic	

response	in	relation	to	the	genotype	of	isolates	adapted	to	the	constituent	drugs.	a	

Schematic	overview	of	the	possible	genetic	responses	of	drug-pair-evolved	isolates	

compared	to	those	evolved	to	the	component	drugs.	b	–	e	Examples	of	the	genotypes	of	

the	eight	replicates	of	single-drug-evolved	and	drug-pair-evolved	isolates	for	each	

genetic	group.	

	

The	Mixed	group	contained	two	drug	pairs,	where	a	significant	difference	(R	>	0.2	and	p	

<	0.005,	Table	S8)	between	the	genotypes	of	isolates	evolved	to	individual	drugs	was	

observed,	but	no	significant	difference	was	observed	between	the	genotypes	of	drug-

pair-evolved	isolates	and	those	of	isolates	evolved	to	individual	drugs	(Fig.	4c).	For	

example,	while	the	genotypes	of	isolates	evolved	to	either	ciprofloxacin	or	azithromycin	

were	completely	different,	the	drug-pair-evolved	isolates	exhibited	key	mutations	that	

were	also	found	in	the	isolates	exposed	to	the	individual	drugs	(Fig.	4c).	This	drug	

combination	was	also	the	only	one	that	had	a	median	evolvability	index	greater	than	1,	

indicating	that	compatible	genetic	pathways	are	unlikely	to	reduce	the	evolvability.	The	

two	drug	pairs	with	a	Mixed	genotype	exhibited	either	neutral	or	collateral	resistance	to	

each	other,	further	highlighting	that	these	drug	pairs	have	compatible	genetic	responses	

(Fig.	S7).		
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The	One	Drug	group	was	composed	of	drug	pairs	where	the	genotype	exclusively	

resembled	that	of	isolates	evolved	to	one	of	the	individual	drugs	and	contained	14	drug	

pairs	(Fig.	4d).	For	example,	mutations	selected	against	amikacin	were	also	present	in	

the	isolates	exposed	to	amikacin	and	chloramphenicol,	while	none	of	the	mutations	

found	in	chloramphenicol-adapted	isolates	were	selected	in	the	drug-pair-evolved	

isolates.	Five	drug	pairs	in	the	One	Drug	group	reached	only	final	exposure	levels	

around	the	IC90	of	the	individual	drugs,	mainly	due	to	synergism	(Fig.	S7).	This	finding	

indicates	that	adaptation	to	highly	synergistic	drug	pairs	might	be	achieved	by	selection	

of	mutations	against	one	of	the	constituent	drugs	thereby	possibly	shifting	the	drug	

interaction	profile.	This	would	suggest	that	synergistic	drug	combinations	could	readily	

loose	efficiency	if	used	at	insufficient	doses,	as	previously	suggested	(Lipsitch	and	Levin,	

1997;	Pena-Miller	et	al.,	2013).	Other	factors	influencing	the	selection	of	mutations	

towards	one	of	the	drugs	might	be	differences	in	the	steepness	of	the	dose	response	

curves	(Chevereau	and	Bollenbach,	2015)	and	accordingly	different	levels	of	selection	

pressure	applied	by	the	two	drugs	(Fig.	S8)	as	well	as	differences	in	the	mutation	

selection	window	and	the	ability	to	select	for	mutations	at	subinhibitory	concentrations	

(Fig.	S9).		

	

Another	five	of	the	drug	combinations	in	the	OneDrug	group	were	resistant	to	both	

individual	drugs	and	drug	pairs.	Drugs	in	these	pairs	were	substrates	of	the	AcrB	efflux	

pump	(Yu	et	al.,	2003).	While	isolates	adapted	to	one	of	the	constituent	drugs	alone,	

such	as	ciprofloxacin,	develop	resistance	primarily	via	other	resistance	modes,	such	as	

mutations	in	gyrA,	isolates	adapted	to	the	other	drug,	such	as	doxycycline,	select	for	

efflux-enhancing	mutations.		In	combination,	the	efflux	mutations	are	dominant,	as	these	

mutations	confer	resistance	to	both	drugs	simultaneously	and	are	therefore	likely	to	be	

selected.	Consequently,	the	resulting	genotype	resembles	the	genotype	of	the	efflux-

mutation-selecting	single-drug-evolved	isolates,	even	though	a	shared	resistance	

mechanism	is	selected.		Of	the	remaining	drug	combinations	in	the	OneDrug	group,	two	

displayed	collateral	sensitivity,	which	might	have	suppressed	resistance	evolution	to	

one	of	the	drugs.	

	

The	New	group	included	drug	pairs	for	which	the	ANOSIM	gave	significant	(R	>	0.2,	p	<	

0.005,	Table	S8)	differences	in	genotypes	between	individual	drugs	and	drug	pairs	(Fig.	

4e).	For	example,	azithromycin-	and	trimethoprim-adapted	isolates	shared	almost	no	

mutations,	while	the	isolates	evolved	to	the	combination	of	azithromycin	and	

trimethoprim	selected	none	of	these	mutations	but	repeatedly	accumulated	mutations	

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab006/6108108 by D
TU

 Library user on 16 February 2021



	
	
	
in	the	mechanosensitive	channel	encoding	gene	mscM.	Drug	pairs	with	collateral	

sensitivity	were	found	only	in	the	OneDrug	and	New	groups	(Fig.	S7),	highlighting	those	

incompatible	genetic	trajectories	to	the	individual	drugs	cannot	be	co-selected	in	drug	

combinations.	

	

Drug	pairs	requiring	novel	genetic	responses	exhibit	the	lowest	evolvability	index	

To	assess	the	impact	of	genotypic	response	on	phenotypic	evolvability,	we	analyzed	the	

evolvability	of	the	four	different	genetic	groups.	Drug	pairs	in	the	New	group	generally	

showed	a	lower	evolvability	index	and	a	lower	evolutionary	rate	(Fig.	5a).	Of	the	five	

drug	pairs	that	composed	the	New	genotype	group,	three	exhibited	collateral	sensitivity	

to	each	other	in	at	least	one	direction	and	two	were	defined	collateral	sensitive	based	on	

the	collateral	IC90	change	index.	All	three	contained	an	aminoglycoside	antibiotic	(Fig.	

S7).	These	drug	pairs	also	had	the	lowest	evolvability	indices	within	the	group.	

However,	isolates	evolved	to	azithromycin	and	trimethoprim	also	developed	a	distinct	

new	genotype,	despite	a	lack	of	collateral	sensitivity.		

	

	
Figure	5:	Drug	pairs	requiring	a	novel	genetic	response	compared	to	the	constituent	

drugs	have	a	significantly	lower	resistance	evolvability.	S	=	Shared	genotype;	M	=	Mixed	

genotype;	O	=	OneDrug	genotype;	N	=	New	genotype.	a	The	median	evolvability	index	

(±MAD)	of	drug	combinations	grouped	by	genetic	response	patterns		(Mann-Whitney	U-

test,	median(Shared)	=	0.32,	n(Shared)	=	24,	median(Mixed)	=	0.8,	n(Mixed)	=	15,	

median(OneDrug)	=	0.36,	n(OneDrug)	=	99,	median(New)	=	0.21,	n(New)	=	39,	Shared-

Mixed:	p	=		0.1308,	U	=	233,	Shared-OneDrug:	p	=	0.5815,	U	=	1146,	Shared-New:	p	=	

0.008947,	U	=	291,	Mixed-OneDrug:	p	=		0.0697,	U	=	997.5,	Mixed-New:	p	=	0.009358,	U	
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=	438,	OneDrug-New:	p	=	0.002111,	U	=	1376,	Bonferroni		corrected,	two-sided,	

confidence	level	=	0.95).	b	Schematic	overview	of	the	different	drug	regimes	(single	drug	

A,	single	drug	B	and	drug	pair	A	and	B)	and	the	pool	of	potentially	beneficial	mutations	

that	can	confer	resistance.	We	hypnotize	that	the	adaptation	potential	of	the	Shared	and	

OneDrug	groups	are	comparable	to	the	ones	of	the	individual	drugs,	maybe	slightly	

smaller	due	to	few	genetic	constrains.	The	pool	of	beneficial	mutations	of	the	mixed	

group	might	in	fact	be	bigger	than	the	two	pools	of	the	single	drugs	as	mutations	against	

both	drugs	can	be	selected	for.	This	might	explain	why	the	evolvability	of	drug	pair	

evolved	isolates	in	the	mixed	group	can	be	higher	than	the	evolvability	of	single	drug	

evolved	isolates.	The	New	group	has	a	much	smaller	pool	of	beneficial	mutations,	as	the	

adaptations	against	the	individual	drugs	are	not	compatible,	reducing	the	options	for	

adaptations	and	therefore	the	evolvability.	

	

Overall,	these	findings	highlight	that	drug	combinations	work	best	at	decelerating	

resistance	evolution	when	the	resistance	modes	to	the	individual	drugs	are	

incompatible	and	require	a	novel	genetic	response	(Fig.	5b).	There	appears	to	be	a	low	

probability	of	selection	of	these	novel	responses,	as	evolvability	in	this	genetic	group	

was	significantly	lower	than	that	in	the	other	groups	(Fig.	5).	Interestingly,	collateral	

sensitivity	might	be	an	indicator	for	the	genetic	incompatibility	as	drug	pairs	with	

collateral	sensitivity	grouped	exclusively	in	the	New	and	OneDrug	group	(Pearson's	Chi-

squared	test,	X2	=	16.381,	p	=	0.01185,	df	=	6).	By	contrast,	drug	pairs	that	evolved	
resistance	by	selecting	for	mutations	against	both	drugs,	belonging	either	to	the	Mixed	

or	Shared	group	and	in	part	to	the	OneDrug	groups,	had	higher	evolvability	indices	(Fig.	

5a),	demonstrating	that	combinations	of	antibiotics	that	have	compatible	genetic	

responses	are	not	well	suited	to	limit	resistance	evolution.	 	
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Discussion		

This	study	aimed	to	assess	the	potential	of	antibiotic	combinations	in	reducing	

resistance	evolution	and	to	identify	key	properties	of	these	combinations	that	can	

predict	resistance	evolution.	We	observed	that	de	novo	antibiotic	resistance	evolution	is	

reduced	in	E.	coli	when	two	antibiotics	are	combined.	We	further	assessed	the	ability	of	

phenotypic	parameters	such	as	drug	interactions	and	collateral	responses	to	predict	the	

evolvability.		

	

Previous	studies	reported	conflicting	abilities	of	synergistic	or	antagonistic	drug	

interactions	in	limiting	resistance	evolution	(Barbosa	et	al.,	2018;	Hegreness	et	al.,	2008;	

Lipsitch	and	Levin,	1997;	Munck	et	al.,	2014;	Pena-Miller	et	al.,	2013;	Torella	et	al.,	

2010).	In	line	with	Munck	et	al.	(2014),	we	find	that	drug	interactions	are	weak	

predictors	for	resistance	evolution.	In	addition	to	drug	interactions	we	also	analyzed	the	

impact	of	collateral	drug	responses	on	the	evolvability	of	resistance	to	drug	

combinations.	Previous	work	had	shown	a	correlation	between	collateral	sensitivity	and	

limited	resistance	evolution.	However,	even	though	drug	pairs	with	collateral	sensitivity	

had	a	lower	evolvability	index	as	neutral	or	collateral	resistant	drug	pairs,	the	difference	

was	not	significant.	This	could	be	due	to	the	small	sample	size	of	collateral	sensitive	

drug	pairs	or	the	experimental	design	that	selected	for	a	specific	resistance	level.		

	

Yet,	by	systematically	analyzing	the	genetic	adaptations,	we	observed	a	clear	pattern	

relating	the	genetic	trajectories	to	resistance	evolution.	Grouping	of	drug	pairs	based	on	

genotypes	revealed	that	resistance	evolution	to	drug	pairs	that	required	a	new	

genotypic	response	relative	to	the	genetic	adaptations	to	the	constituent	drugs,	was	

greatly	limited.	Future	work	in	identifying	further	evolutionary	constrained	drug	pairs	

and	a	framework	to	predict	limited	resistance	evolution	will	be	needed	in	order	to	

identify	the	best	drug	combinations	for	limited	resistance	evolution.	

	

In	general,	our	data	provides	a	comprehensive	resource	for	the	exploration	of	de	novo	

resistance	evolution	in	E.	coli	and	of	the	different	phenotypic	and	genotypic	adaptations	

to	monotherapy	and	combination	therapy.	However,	the	number	of	isolated	colonies	for	

each	evolved	lineage	could	be	expanded	in	order	to	ensure	that	population	

heterogeneity	and	heteroresistance	is	captured	sufficiently	in	the	analysis	and	

additional	drug	combinations	and	organisms	would	need	to	be	characterized	to	

elucidate	whether	our	findings	can	be	further	generalized.	In	addition,	the	impact	of	

drug	combinations	on	the	evolution	of	antibiotic	tolerance	should	be	addressed	in	future	
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work.	Moreover,	it	remains	to	be	determined	whether	our	findings	can	be	translated	to	

the	clinic.	Adaptive	evolution	is	frequently	used	to	explore	the	response	to	antibiotic	

exposure	(Imamovic	and	Sommer,	2013;	Jahn	et	al.,	2017;	Lazar	et	al.,	2014;	Munck	et	

al.,	2014).	However,	factors,	such	as	horizontal	gene	transfer,	host-pathogen	

interactions,	interactions	between	bacterial	populations,	side	effects	and	

pharmacodynamics	of	the	antibiotics,	as	well	as	patient	condition	and	disease,	need	to	

be	considered	when	clinical	experiments	are	conducted.	Nonetheless,	we	expect	that	

this	framework	for	assessment	of	evolvability	of	drug	combinations	will	be	the	base	for	

further	research	on	the	rational	design	of	drug	combinations	for	efficient	and	resistance-

limiting	therapies.	 	
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Materials	and	Methods	

Bacterial	strains	and	growth	conditions	

Chromosomally	barcoded	Escherichia	coli	MG1655	K12(Jahn	et	al.,	2018)	were	grown	in	

LB	at	37	°C	and	600	r.p.m.		shaking.	They	were	grown	under	the	same	conditions	

without	shaking	for	the	IC90	determination.	

	

Adaptive	laboratory	evolution	(ALE)	to	individual	drugs	and	drug	combinations	

E.	coli	lineages	were	evolved	each	in	8	biological	replicate	lineages	to	22	different	

antibiotics	and	33	different	antibiotic	pairs	(Table	S1)	resulting	in	460	individual	

lineages	of	which	all	E.	coli	lineages	carried	a	unique	genetic	barcode	(Jahn	et	al.,	2018).	

Barcodes	allowed	to	track	lineages	and	to	ensure	that	no	cross-contamination	between	

replicates	took	place.	Moreover,	genetically	adapted	lineages	with	barcodes	can	be	

provided	as	a	valuable	resource	for	additional	experiments.	All	antibiotics	used	in	this	

study,	their	mechanism	of	action,	solvent	and	storage	conditions	are	listed	in	Table	S2.	

For	the	evolution	towards	drug	combinations,	the	drugs	were	combined	in	a	1:1	ratio	

based	on	the	WT	IC90	values	of	the	individual	drugs	(Munck	et	al.,	2014).	The	WT	was	

exposed	to	a	dilution	series	of	the	drug	mixture,	the	IC90	of	the	drug	combination	was	

established	and	used	as	a	reference	to	define	the	antibiotic	concentrations	used	for	the	

adaptive	evolution	experiment	(Table	S3).	The	antibiotic	pairs	were	chosen	to	cover	the	

most	important	drug	classes	(beta-lactams,	flourquinolones,	aminoglycosides,	

macrolides,	tetracyclines,	chloramphenicol	and	peptide	antibiotics)	in	all	their	possible	

combinations,	to	include	drug	pairs	of	drugs	from	the	same	drug	classes	and	some	

additional	drug	pairs	so	that	we	could	cover	all	possible	drug	interactions	and	collateral	

relation	ships	between	drug	pairs.		

	

The	adaptive	evolution	experiment	was	carried	out	in	96-deep-well	plates.	The	plates	

were	filled	with	LB	by	a	Hamilton	robot,	sealed	and	stored	at	room	temperature.	

Antibiotics	were	added	by	the	robot	the	day	before	the	experiment	started	and	plates	

were	stored	at	-20°C.	An	overnight	culture	grown	in	LB	was	used	to	inoculate	the	ALE	

experiments.	All	passaging	of	cells	was	done	manually	with	an	8-channel	pipette.	As	a	

control	20	replicates	were	evolved	to	LB	media	alone.	Each	96-well	plate	also	harbored	

8	negative	controls	that	stayed	uncontaminated	throughout	the	evolution	experiment.	

Cells	were	grown	for	22	h	at	37	°C	and	600	r.p.m.	shaking,	ensuring	mixing	of	the	

population	and	aerobic	growth	conditions	(aerobic	growth	conditions	during	the	

evolution	can	be	assumed	as	genetic	adaptations	to	aminoglycoside	antibiotics,	whose	

uptake	depends	on	aerobic	respiration,	were	identified	as	well	as	a	mutational	overlap	

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab006/6108108 by D
TU

 Library user on 16 February 2021



	
	
	
with	other	studies	that	had	a	greater	surface:volume	ratio	(Munck	et	al.,	2014)	or	better	

mixing	(Hegreness	et	al.,	2008)).	Thereafter,	100	μl	were	transferred	to	a	96-well	plate	

and	the	optical	density	(OD600)	of	each	lineage	was	measured	in	an	ELx808	Absorbance	

Reader	(BioTek)	at	a	wavelength	of	600	nm.	In	addition,	50	μl	of	cells,	corresponding	to	

a	20-fold	dilution	(Jahn	et	al.,	2017;	Wahl	et	al.,	2002),	were	passaged	to	a	new	pre-

heated	96-deep-well	plate	containing	LB	and	a	25	%	increase	in	antibiotic	concentration	

in	a	total	volume	of	1	ml/well.	The	starting	concentration	was	25	%	of	the	WT	IC90	and	

the	WT	IC90	drug	concentration	was	reached	on	the	7th	day	of	the	ALE	(Table	S3).	The	

evolution	was	stopped	after	18	days	at	a	final	concentration	exceeding	10	fold	of	the	WT	

IC90	(Jahn	et	al.,	2017).	All	antibiotic	concentrations	can	be	found	in	Table	S3.	The	IC90	of	

the	lineages	was	measured	on	day	0,	8,	13	and	18	of	the	ALE	in	order	to	track	the	

resistance	evolution	on	the	population	level.		

	

After	each	transfer	an	aliquot	of	100	μl	was	mixed	with	glycerol	to	a	final	glycerol	

concentration	of	12.5	%	and	stored	at	-80	°C.	Cells	were	streaked	on	LB	agar	from	the	

frozen	aliquot	saved	on	the	last	day	with	growth	(OD600	>	0.1).	Some	cells,	were	very	

difficult	to	revive	as	observed	before	(Barbosa	et	al.	2017).	If	reviving	failed,	cells	were	

inoculated	into	liquid	LB	before	being	streaked	on	LB	agar.	If	cells	still	failed	to	revive,	

cells	were	streaked	from	the	aliquot	saved	the	day	before	the	last	day	of	growth.	Despite	

the	effort,	some	lineages	would	not	revive	at	all.	A	list	with	all	lineages,	their	last	day	of	

growth	in	the	ALE	and	the	day	of	the	ALE	they	have	been	revived	from	can	be	found	in	

the	supplementary	(Table	S4).	One	isolated	colony	was	picked	randomly	for	each	

evolved	lineage,	grown	in	LB	and	frozen	at	-80	°C	for	further	phenotypic	and	genotypic	

characterization.	Lineages	adapted	to	the	following	antibiotics:	Erythromycin,	

Sulfamethoxazole,	Fosfomycin	as	well	as	the	combination	of	Sulfamethoxazole	and	

Trimethoprim	displayed	inconsistent	phenotypes	or	did	not	develop	resistance	due	to	

technical	reasons	such	as	drug	stability	after	freezing.	Therefore,	these	drugs	were	

excluded	from	this	study.	

	

IC90	determination	

100	μl	of	LB	were	inoculated	with	pin-replicators	from	frozen	stocks	of	isolated	colonies	

and	grown	overnight.	About	105	cells	were	transferred	with	pin-replicators	into	plates	

containing	a	2-fold	drug	gradient	ranging	over	10	different	concentrations.	Plates	were	

grown	at	37	°C	for	18	h.	The	OD600	was	measured	for	each	well.	The	OD600	data	was	

normalized	and	used	to	create	dose-response	curves	in	R	as	described	before	(Munck	et	

al.,	2014).	In	brief,	percent	inhibition	was	calculated	by	the	following	formula:	
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The	IC90	was	defined	as	the	lowest	concentration	of	the	drug	that	inhibited	90%	of	the	

growth	(Imamovic	et	al.,	2018;	Munck	et	al.,	2014).	All	IC90	values	were	generated	at	

least	in	two	technical	replicates.	If	the	WT	IC90	differed	more	than	2-fold	from	the	WT	

IC90	value	established	before	the	ALE	started,	the	IC90	test	was	repeated	along	with	the	

ancestor	WT.	No	significant	(Student´s	t-test,	p	>	0.05)	differences	between	the	

susceptibility	of	the	WT	and	the	media	adapted	WT	were	observed.	The	IC90	values	were	

normalized	to	the	media	adapted	WT	IC90.		The	heatmap	presenting	the	collateral	

sensitivity	and	resistance	of	the	single	drug	evolved	lineages	(Fig.	S2)	displays	the	times	

increase	of	the	IC90	compared	to	the	media	adapted	WT	with	a	significance	level	of	at	

least	p	<	0.0001.	Significance	levels	were	obtained	as	described	before	(Imamovic	et	al.,	

2018).	Briefly,	by	comparing	the	growth	data	OD600	in	10	different	antibiotic	

concentrations	of	all	technical	and	biological	replicates	adapted	to	the	same	drug,	with	

all	media	adapted	technical	and	biological	replicates	exposed	to	the	same	drug	and	

concentration.	Within	the	natural	variation	of	the	samples	3000	additional	data	points	

were	computed	to	identify	robust	differences	among	samples.	Times	increase	or	

decrease	in	growth	compared	to	the	WT	was	calculated	in	steps	of	0.5	ranging	from	-

10.5	to	10.5.	Pairwise	t-tests	between	drug	adapted	and	media	adapted	data	were	

performed	and	the	highest	times	increase/the	lowest	times	decrease	with	a	significance	

value	of	at	least	p	<	0.0001	was	given	as	output.	

	

Calculation	of	important	variables	

Based	on	the	IC90	values	several	calculations	were	made,	that	are	explained	in	the	

following:		

	

The	evolvability	index	is	a	measure	of	the	final	phenotypic	adaptation	level	of	isolated	

drug-pair-evolved	lineages	to	the	individual	drugs	relative	to	isolated	single-drug-

evolved	lineages	(Munck	et	al.,	2014).	The	evolvability	index	compares	resistance	

evolution	between	drug	pair	and	single	drug	evolved	lineages	to	individual	antibiotics.	It	

was	calculated	as	described	before	(Munck	et	al.,	2014).	In	short,	the	following	formula	

was	used:		
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Two	replicate	lineages	evolved	to	Amikacin	and	Nitrofurantion,	as	well	as	two	replicate	

lineages	evolved	to	Ciprofloxacin	and	Doxycycline	had	evolvability	indices	above	1000.	

They	displayed	extremely	high	IC90	values,	when	tested	to	one	of	the	individual	drugs	

(Nitrofurantion/Doxycycline).	As	these	values	were	way	outside	of	a	reasonable	range	

of	resistance	they	were	treated	as	technical	errors	and	therefore	excluded	from	the	

entire	analysis.	

	

Drug	interactions	were	determined	for	isolated	colonies	using	a	Loewe	additivity model	

and	the	IC90	as	effect	level.	The	Loewe	additivity	model	was	chosen	as	it	assumes	

additive	effects	of	identical	drugs	(Munck	et	al.,	2014).	This	is	important	as	drugs	with	

the	same	target	and	drugs	from	the	same	drug	class	were	combined	in	this	experiment.	

The	fractional	inhibitory	concentration	index	(FICI)	was	calculated	according	to	the	

following	formula:		

	

𝐹𝐼𝐶𝐼 =  
𝐼𝐶!"𝐴𝐵!" ∗  ω
𝐼𝐶!"𝐴!"

+
𝐼𝐶!"𝐴𝐵!" ∗ (1 − ω)

𝐼𝐶!"𝐵!"
 	

	

ω	is	the	molar	fraction	of	A	in	the	drug	combination	AB.		As	it	was	shown	that	additive	

effects	are	robustly	detected	at	a	cutoff	between	1	and	1.25	(Meletiadis	et	al.,	2010),	we	

applied	a	low	but	symmetric	cutoff	in	order	to	group	the	drug	pairs	into	synergistic	

(<0.75),	antagonistic	(>1.5)	and	additive	(0.75	–	1.5)	combinations.		

	

The	collateral	IC90	change	index	was	calculated	for	isolated	colonies	as	described	before	

(Munck	et	al.,	2014).	In	short,	the	following	formula	was	used:		

	

𝑐𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝐼𝐶!"𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑑𝑒𝑥 =  

𝐼𝐶!"𝐴!
𝐼𝐶!"𝐴!"

+ 𝐼𝐶!"𝐵!
𝐼𝐶!"𝐵!"

 

2
	

	

All	drug	pair	evolved	lineages	were	grouped	into	collateral	sensitivity	(<	0.5),	collateral	

resistance	(>2)	and	neutral	(0.5	–	2)	effects	according	to	the	collateral	IC90	change	index.	
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A	table	including	all	phenotypic	information	of	the	drug	pair	evolved	lineages	can	be	

found	in	the	supplement	(Table	S9).	

	

Whole-genome	sequencing	and	sequence	analysis	

1	ml	LB	in	each	well	of	a	96-well,	deep-well	plate	was	inoculated	from	frozen	stocks	of	

isolated	colonies	and	grown	at	37	°C	and	600	r.p.m.	overnight.	Cells	were	spun	down	at	

2000	r.p.m.	for	3	minutes.	LB	was	removed	and	replaced	by	DNA	shielding	buffer	(Zymo	

Research).	Samples	were	sent	to	BaseClear	B.V.	for	genomic	DNA	extraction	(ZYMO	

research),	Nextera	XT	library	preparation	(Illumina)	and	125	paired-end	whole-genome	

Illumina	HiSeq	2500	sequencing.	The	resulting	fasta	reads	were	used	in	the	following	

workflow:	

	

(1)	Single	nucleotide	variants	(SNPs)	and	small	insertions	and	deletions	(INDELS)	were	

called	using	CLC	Genomics	workbench	as	described	before40.	E.	coli	reads	were	aligned	

to	the	E.	coli	K12	U00096	reference	genome.	On	average,	the	coverage/base	was	at	least	

37	fold.	For	SNP	calling	only	positions	with	a	phred	score	of	at	least	30	at	the	position	

where	the	SNP	occurred	and	at	the	three	neighboring	positions	were	considered.	In	

addition,	the	SNP	had	to	be	detected	with	a	frequency	of	at	least	80	%.		

	

(2)	CLC	Genomics	workbench	was	further	used	to	detect	large	insertions	and	deletions	

(large	INDELS)	in	the	reads	using	the	INDEL	function	at	default	settings.	The	resulting	

INDELS	were	considered	when	they	occurred	with	a	frequency	of	more	than	80	%	and	

in	more	than	5	different	reads.		

	

(3)	Large	insertions	were	additionally	detected	by	a	custom	made	script	used	before41.	

The	reference	genomes	of	MG1655	as	well	as	all	open	reading	frames	were	downloaded	

from	the	NCBI	nucleotide	archive	and	used	to	cluster	all	ORFs	with	cd_hit	(Li	and	Godzik,	

2006).	The	cluster	cut	off	was	90	%	identity	and	coverage.	Afterwards	the	sequenced	

reads	from	this	study	were	quality	filtered	using	the	FASTX-Toolkit	package	with	a	

minimum	quality	of	30	and	blasted	against	the	clustered	ORFs	with	a	word	size	of	16	

and	an	e-value	of	0.01.	Reads,	with	more	than	90%	coverage	mapping	continuously	to	

the	genome,	that	mapped	to	two	different	clusters	with	an	overlap	between	30	and	70	%	

were	kept	for	further	analysis.	Reads	were	filtered	so	they	did	not	cover	clusters	

representing	adjacent	genes.		Finally,	large	insertions	were	only	counted	when	they	

were	observed	in	at	least	5	individual	reads.	
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(4)	Gene	duplications	were	detected	using	CLC	workbench	and	a	customized	script	in	R	

as	described	before(Jahn	et	al.,	2017).	Regions	>	100	bp	of	significantly	(p	<	0.00001)	

increased	coverage	according	to	a	Poisson	distribution	were	identified	using	CLC	

workbench.	The	identified	regions	were	mapped	to	the	genome	and	a	gene	that	was	

overlapping	at	least	95%	with	a	region	of	high	coverage	was	counted	as	gene	

duplication.			

	

INDELS	that	were	detected	by	multiple	of	the	parallel	analyses	were	only	counted	once.	

Seven	WT	lineages	adapted	to	the	media	were	sequenced	as	a	control	and	mutations	as	

well	as	duplications	found	in	these	lineages	were	excluded	from	all	lineages	as	they	are	

likely	mutations	that	have	been	inserted	prior	to	the	experiment	or	are	involved	in	

media	adaptations.	As	no	significant	(Student’s-test,	p	>	0.05)	phenotypic	difference	

between	the	resistance	level	of	the	ancestor	WT	and	the	media	adapted	WT	lineages	

were	identified,	those	genetic	changes	are	unlikely	to	cause	antibiotic	resistance.		

	

Jaccard´s	distance	

The	genetic	data	was	used	to	create	a	presence	absence	table	for	each	mutations	and	

lineage.	Based	on	this	matrix	the	Jaccard´s	distance	was	calculated	using	the	jaccardSets	

function	in	R	from	the	package	bayesbio(McKenzie,	2016).	

	

Analysis	of	similarity	

Based	on	the	genetic	data	including	SNPs,	INDELS	and	gene	duplications,	a	binary	

presence	absence	data	matrix	was	created	for	each	lineage	and	all	genes.	The	matrix	was	

summed	for	all	replicates	of	the	same	condition	and	subsequently	used	to	calculate	a	

dissimilarity	matrix	with	the	package	“vegan”	in	R	using	Euclidian	distance	(Oksanen	et	

al.,	2019).	We	performed	an	analysis	of	similarities	with	the	anosim	function	from	the	

package	“vegan”	in	R	for	the	entire	dataset	in	order	to	test	whether	significant	

differences	between	groups	could	be	expected	(Oksanen	et	al.,	2019).	Our	dataset	

included	significant	(p	<	0.01)	differences	between	lineages	adapted	to	different	drugs,	

wherefore	we	calculated	pair-wise	differences	between	different	drug-adapted	groups	

of	replicates	with	the	same	methodology	and	1000	permutations.	We	calculated	three	

different	similarities	for	each	drug	pair:	first,	we	compared	lineages	evolved	to	both	

single	drugs	constituting	the	pair,	second,	we	compared	the	group	of	one	of	the	single	

drug	adapted	lineages	to	the	drug	pair	evolved	lineages	and	third,	we	compared	the	

other	single	drug	evolved	lineages	to	the	drug	pair	evolved	ones.	Groups	were	

considered	to	be	significantly	different	when	they	had	a	p-value	smaller	than	0.005	and	
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an	R	statistics	greater	than	0.2.	A	R	statistics	of	0.2	has	previously	been	described	as	

measure	for	mild	similarities	between	groups	(Oksanen	et	al.,	2019).	The	results	were	

aggregated	with	the	package	“data.table”	(Dowle	and	Srinivasan,	2018).		

	

Data	availability	and	code	

Genomic	data	is	available	in	NCBI	under	the	accession	number	SUB5823083.	All	

phenotypic	data	and	scripts	can	be	provided	upon	request.		For	the	calculations	and	

different	analysis	the	following	R	packages	have	been	utilized:	“plyr”	(Wickham,	2011),	

“dplyr”	(Wickham	et	al.,	2018),	“tidyr”	(Wickham	and	Henry,	2018),	“ggplot2”	(Wickham,	

2016),		“data.table”	(Dowle	and	Srinivasan,	2018),	“gdata”	(Warnes	et	al.,	2017),	

“SciViews”	(Grosjean,	2018),	“drc”	(Ritz	et	al.,	2015),	“scales”	(Wickham,	2018),	

“gridExtra”	(Auguie,,	2017),	“cowplot”	(Wilke,	2018),	“stringr”	(Wickham,	2018),	

“ggpubr”	(Kassambara,	2018),	“magrittr”	(Bache	and	Wickham,	2014).	For	Fig.	1	

RawGraphs	(Mauri	et	al.,	2017)	was	used	to	create	the	figure.	All	figures	were	edited	in	

Abode	Illustrator.		 	
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