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methods enables the systematic optimization of metabolic 
pathways and strain selection7,9. However, these approaches 
are very inefficient at introducing larger modifications such as  
insulator elements1,2,10.

In bacteria, initiation is the rate-limiting step of translation 
and a major determinant of overall protein expression11. In gen-
eral, the process requires an initiation codon and an upstream 
Shine-Dalgarno (SD) sequence, which is often a variation of 
the AGGAGG consensus12–14. The complementarity of the SD 
sequence and the anti-SD sequence in 16S ribosomal RNA has 
a strong influence on translation initiation12,14, making the SD 
sequence an ideal engineering target—changing even a few bases 
can lead to substantial changes in the translation level. However, 
knowledge of the relationship between SD sequence and protein 
expression has been limited to a subset of studied SD sequences 
and thermodynamic models; this has made forward engineering 
difficult because of confounding factors such as codon usage in 
the N-terminal protein sequence15–17.

To map the relationship between SD sequence and protein level, 
we applied MAGE with randomized six-base oligomers (N6) to 
comprehensively mutate the SD sequence of a constitutive pro-
moter driving the GFP gene integrated in the E. coli K12 MG1655 
genome (Online Methods). Cells were segregated into 16 GFP-
expression bins using FACS (Fig. 1a) followed by DNA extrac-
tion, SD-sequence amplification and sequencing from each bin 
(Flow-seq). From 12.5 million usable reads, we identified 4,066 
(or 99.3%) of the 4,096 (46) possible SD sequences, 3,087 of which 
exceeded our cutoff of 50 reads for reliable quantification.

We observed low correlation between protein expression  
(Online Methods and Supplementary Table 1) and the  
calculated hybridization energy between 16S rRNA and SD 
sequences (Fig. 1b). Sequences with a medium to strong  
hybridization energy, in particular, spanned a wide range of 
expression levels. Sorting normalized SD-sequence read counts 
by mean protein expression showed that most sequences led to 
low expression (Fig. 1c; 65% of sequences produced 10% of maxi-
mal expression) and were distributed across multiple bins with a 
clear peak (Fig. 1d).

To validate expression estimates from Flow-seq, we isolated 
106 clones across all 16 bins and measured GFP levels using a 
plate reader (Supplementary Table 2). Individually measured 
SD sequences were highly correlated with Flow-seq estimates  
(R2 = 0.95, P < 10−67, linear regression) across a 200-fold expres-
sion range (Fig. 1e).

We compared our experimental data to those from state-of-the-art  
computational models based on the binding energy between 
ribosome and mRNA, spacing between the start codon and the 
SD sequence, and other parameters16. We used RBS Calculator15 
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We comprehensively assessed the contribution of the shine-
dalgarno sequence to protein expression and used the data 
to develop emoPec (empirical model and oligos for Protein 
expression changes; http://emopec.biosustain.dtu.dk).  
emoPec is a free tool that makes it possible to modulate the 
expression level of any Escherichia coli gene by changing only 
a few bases. measured protein levels for 9�% of our designed 
sequences were within twofold of the desired target level.

The ability to precisely modify gene expression levels is critical 
for constructing new functional structures such as cell factories  
and biological circuits, and it represents a key challenge for syn-
thetic biology. Recent efforts have focused on measuring the 
activity of modular genetic parts in plasmid systems for better for-
ward engineering1–4. One goal has been to establish a toolbox of 
standard components for transcription and translation initiation.  
For example, measuring the performance of approximately 500 
standard genetic elements alone and in limited combinations was 
sufficient for predicting activity in larger circuits1,2. Alternatively, 
efficient screening of synthetic libraries, such as the expression 
of 12,563 combinations of common promoters and ribosome-
binding sites, using fluorescence-activated cell sorting (FACS) 
and deep sequencing (Flow-seq) suggested that such approaches 
could be used in place of prediction or standardization3.

Although plasmid-based strategies show great promise, several  
applications, including cell-factory engineering, rely on  
genomically encoded proteins for which the insertion of large 
elements and insulators may be problematic (for example, owing 
to unpredictable consequences of inserting insulators in operons, 
overlapping genes or the low efficiency of genomic replacement 
for larger DNA sequences5,6).

It is now possible to modulate the expression of multiple  
chromosomally encoded genes using multiplex automated 
genome engineering (MAGE)7 and its derivative microar-
ray MAGE8. Mining diverse cell libraries created by these  
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(version 1.0) to predict the translation- 
initiation rates for all 4,096 SD sequences 
and compared those values to GFP levels 
estimated by Flow-seq (Supplementary 
Fig. 1). We also compared RBS Calculator 
(version 2.0) predictions for the 106  
single-clone GFP levels to the plate 
reader data (Fig. 1f). Both sets of predic-
tions were not very strongly correlated  
(R2 = 0.44, P < 10−13 and R2 = 0.54, P < 10−17,  
respectively), highlighting the need 
for further development of predictive  
computational models.

To address the need for better de novo mod-
els, we developed EMOPEC (freely avail-
able at http://emopec.biosustain.dtu.dk  
and as Supplementary Software) to pre-
dict E. coli gene expression on the basis 
of SD-sequence engineering. Out of 4,096 
possible SD sequences, we experimentally 
characterized the strength of 3,087, and we 
predicted the strength of the remaining 
sequences using a Random Forest regres-
sor (Online Methods). Fivefold cross- 
validation of the model yielded an R2 of 0.89 (Supplementary Fig. 2).  
We also developed a method for identifying the SD sequence of 
a gene, which involves scanning the region upstream of the start 
codon for the 6-bp sequence with the highest predicted expres-
sion and multiplying by a penalty function that compensates for 
a suboptimal distance to the start codon (Online Methods).

With EMOPEC, identified SD sequences are assigned a strength 
value on the basis of a model derived from Flow-seq data (Fig. 1c 
and Online Methods). The lowest and highest predicted strength 
values for a given SD sequence are set to 0% and 100%, respec-
tively, and EMOPEC selects sequences with expression close to 
the desired target that result in a minimum change in second-
ary structure. The default output is ten SD sequences predicted 
to produce ten linearly spaced expression levels from 10% of 
the maximum up to the predicted maximum expression level 

(this refers to our estimate of the highest expression that can be 
achieved by varying the SD sequence alone).

Control elements such as ribosome-binding sites and promoters  
are frequently context dependent, and expression levels may 
depend on the N-terminal protein sequence of the expressed 
gene, especially owing to the effects of the mRNA secondary  
structure1–3,15,18. To minimize these effects, EMOPEC calculates 
the free energy of secondary structures −35 to +35 nt from the start 
codon (excluding the contribution from SD-ribosome binding18) 
for all SD sequences substituted into a given transcript. For each 
targeted relative expression level, EMOPEC samples transcripts 
with at least ten SD sequences predicted to result in expression 
closest to the desired value and then filters according to the least 
predicted change in secondary-structure energy compared with the 
original transcript sequence. The extent of changes in secondary  
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figure � | Characterization of the E. coli SD 
sequence. (a) Experimental design and FACS  
bins with SD-sequence read counts. a.u., 
arbitrary units. (b) Hybridization energies 
for 16S rRNA and the estimated SD-sequence 
strength derived from Flow-seq data  
(n = 3,087). (c) Heat map of normalized read 
counts for SD sequences ordered by estimated 
SD-sequence strength (left) and estimated  
SD-sequence strength for all assessed sequences 
(right) (n = 3,087). Red shading indicates  
the percentage of total reads (across all bins) 
for an individual SD sequence that are found in 
a specific bin. (d) Examples of the read counts 
for four SD sequences across flow-sorted bins. 
(e) Plate reader fluorescence values compared 
with Flow-seq measurements (n = 106). (f) RBS 
Calculator15 (version 2.0) predictions compared 
with observed values for GFP expression  
(n = 106). Green circles in e and f indicate 
sequences shown in d.
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structure is predicted to be very low; thus most changes in  
expression are expected to result from differences in ribosome- 
binding strength. EMOPEC uses the MAGE Oligo Design  
Tool19 (MODEST) to generate optimized MAGE oligos for 
directly engineering desired protein-expression changes.

We generated a resource that includes ten MAGE oligos  
predicted to result in linearly spaced expression levels for every 
gene in E. coli K12 MG1655 (Supplementary Table 3). One  
version is an unconstrained library, and a second version intro-
duces synonymous substitutions only into genes that overlap 
the SD sequence. The change in free energy corresponding to 
all 40,526 designed SD-sequence mutations in the resource is  
0.51 kcal mol−1 on average (Supplementary Fig. 3 and 
Supplementary Table 3), and most SD-sequence substitutions 
introduce only 3–5-bp changes. Even with the constraints, it was 
possible to design changes in SD sequence that led to expression 
levels very close to target values for most genes (Supplementary 
Fig. 4). Changes in SD sequence are slight and are not expected 
to perturb other aspects of regulation; however, in some cases,  
complex regulation (for example, involving transcription  
factor–binding sites, Rho-independent termination sites or 
riboswitches) may be affected, and users are advised to check for  
this manually.

To test performance, we used EMOPEC to generate up to ten 
evenly spaced protein-expression levels for each of six chromo-
somal genes: integrated mCherry and the native E. coli genes 
lacZ, aceA, can, ppc and aspC. λ-Red recombination was used 
to introduce the MAGE oligo sequences, and expression was 
measured on the basis of mCherry fluorescence, β-galactosidase  
activity for lacZ, or quantitative mass spectrometry for the 
remaining genes (Online Methods). We observed a linear rela-
tionship and good correlation between EMOPEC-predicted  
and observed expression for all tested proteins (Fig. 2;  
R2 = 0.55–0.85). We also tested the algorithm on published data 
from a plasmid system in which an SD sequence was varied and 
downstream mRFP1 was measured20. The results indicated that 
EMOPEC can also be used to design relative expression levels 
in a plasmid system (Fig. 2; R2 = 0.78). We did not observe 

significant changes in mCherry mRNA levels among the eight 
strains tested, indicating that differences in expression were 
not due to changes in transcriptional activity (Supplementary  
Fig. 5 and Online Methods).

Even though we anticipated that the detection of native ribo-
some-binding sites might not be precise in all cases, the results 
for the six tested genes show that predictions were sufficiently 
precise for EMOPEC to function. We recommend that the option 
to manually specify the spacing be used whenever possible.

We also compared observed expression levels for the six 
test genes with predictions from RBS Calculator version 2.0 
(Supplementary Figs. 6 and 7). The results showed that cor-
relations were lower with RBS Calculator (pooled R2 = 0.37,  
compared with R2 = 0.64 for EMOPEC).

Our data suggest that it is possible to predictably modulate  
relative protein-expression levels through carefully designed 
changes in upstream SD sequences. Our engineering design  
strategy is based on empirical data and facilitates the uniform 
exploration of phenotypic space in E. coli. EMOPEC reduces the 
number of mutations that need to be constructed for metabolic 
engineering through the use of small changes that can be imple-
mented with high efficiency and without selection markers. As an 
example, we constructed more than 60 individual strains to test 
EMOPEC within 3 weeks, from design to sequence validation of 
single colonies.

With EMOPEC, 91% of the designed sequences led to  
measured protein levels within twofold of the desired target  
level. In comparison, state-of-the-art studies with standard-
ized genetic elements showed reliability of 64% (ref. 3) and 93%  
(ref. 2), and RBS Calculator was reported to have a 47% probabil-
ity of expressing a protein to within twofold of the target level15. 
Furthermore, when modifying genomically encoded genes or 
pathways, especially in multiplex, insertion of standardized genetic 
elements is often not possible, whereas EMOPEC can be used to 
change the expression level of both chromosomal and plasmid-
encoded genes.

Finally, the data sets used to build these data-driven models can 
also be used to refine and parameterize de novo models, thereby 
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figure � | Experimental validation of the EMOPEC algorithm. Predicted expression levels of  
mCherry and native E. coli genes designed with EMOPEC and of plasmid-based mRFP1 (from  
ref. 20) were significantly correlated with observed values (P < 0.001 for all, significance test  
for linear regression). Each data point for mCherry, lacZ and mRFP1 represents the average ± 
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individual data points from quantitative mass spectrometry (Online Methods).
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increasing the understanding of the biophysical principles gov-
erning the control of transcription and translation.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Bacterial strains, plasmids and reagents. Strains and plasmids  
used for recombineering, fluorescence measurements and  
β-galactosidase enzymatic-activity assays in this study are listed 
in Supplementary Table 4. All strains were grown in lysogeny 
broth (LB; 10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl) or 
on LB-agar plates supplemented with appropriate antibiotics  
(ampicillin, 100 µg/ml; kanamycin, 50 µg/ml) if needed, or 
grown in M9 minimal media (6.8 g/L Na2PO4, 3 g/L KH2PO4, 
0.5 g/L NaCl, 1 g/L NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2)  
supplemented with trace elements (0.5 mg/L FeCl3·6H2O, 
0.09 mg/L ZnSO4·7H2O, 0.06 mg/L CuCl2·2H2O, 0.06 mg/L 
MnSO4·H2O, 0.09 mg/L CoCl2·6H2O), Wolfe’s vitamin solution  
(10 µg/L pyridoxine hydrochloride, 5 µg/L thiamine-HCl, 5 µg/L 
riboflavin, 5 µg/L nicotinic acid, 5 µg/L calcium D-(+)-pantothenate,  
5 µg/L p-aminobenzoic acid, 5 µg/L thiotic acid, 2 µg/L biotin, 
2 µg/L folic acid, 0.1 µg/L vitamin B12), and 2 g/L glucose. 
Minimal M9 agar plates were supplemented with 1.5% agar.  
All oligos were synthesized by Integrated DNA Technologies 
(Leuven, Belgium) and are listed in Supplementary Table 4. 
PCR reactions were performed using Phusion High-Fidelity 
DNA polymerase (New England BioLabs) according to the  
manufacturer’s instructions.

Construction of fluorescent E. coli strains and pMA1. gfp and 
mCherry21 were PCR amplified with oligos designed to con-
tain the constitutive promoter sequence BBa_J23100 (Registry 
of Standard Biological Parts) in combination with a strong 
SD sequence using, respectively, a folding reporter vector and 
pKS1 (refs. 22,23) (obtained from Morten Nørholm, DTU) as  
templates. An FRT-flanked kanamycin cassette was PCR ampli-
fied from pkd4 (ref. 24), and they were spliced together with the 
PCR-amplified fluorescent genes by overlap extension PCR. The 
spliced cassettes were integrated into the genome of E. coli K12 
MG1655 (9 bp downstream of glmS) by λ-red recombineering 
using the temperature-sensitive plasmid pkd46 (ref. 24). The 
FRT-flanked KmR cassettes were subsequently removed using the 
temperature-sensitive, FLP-containing plasmid pCP20 (ref. 25).  
The GFP variant originally isolated from Aequorea victoria 
contains the following substitutions compared to the sequence 
reported by Prasher et al.26: F64L, S65T, Q80R, F99S, M153T, 
V163A and I219V. Cells constitutively expressing gfp were detect-
able under blue light.

Plasmid pMA1 was constructed by PCR amplification of the  
λ-phage β-gene from strain EcNR2 (ref. 7). The PCR fragment 
was digested with NcoI and HindII and cloned into the corre-
sponding sites of pBAD24. The insert was verified by sequencing 
(Beckman Coulter Genomics, UK).

Single-stranded oligo recombineering. Cells containing the 
pMA1 plasmid were grown in 15 ml of LB broth supplemented 
with ampicillin (100 µg/ml) with shaking at 37 °C to an OD600 of 
0.4, after which the β-protein was induced for 10 min by the addi-
tion of arabinose to a final concentration of 0.2%. After induction, 
cells were placed on ice for 15 min before they were harvested, 
washed, and finally resuspended in a total volume of 200 µl of ice-
cold sterile water. We mixed 50 µl of electrocompetent cells with 
5 pmol of oligo and electroporated them in 0.1-mm gap cuvettes 
at 1.8 kV, 200 Ω and 25 µF. Immediately after electroporation, we 

added 1 ml of LB to the cells. Cells were transferred to a 50-ml 
Falcon tube to a total volume of 5 ml in LB and grown for at least 
3 h at 37 °C to allow segregation of chromosomal DNA. After 
outgrowth, the culture was diluted and spread on LB-agar plates 
for further analysis.

SD-gfp cell library. We used single-stranded (ss) oligo recom-
bineering to change the 6-nt SD sequence (AGGAGA) located 
8 bases upstream of the gfp initiation codon by using 90-bp-
long ssDNA oligos. Initially the SD sequence was altered to the  
anti-SD sequence (TCCTCC) using oligo P324. The recombineering  
efficiency was approximately 10%. We isolated single colonies by 
re-streaking at least twice, and we verified the insert by sequencing.  
A single colony containing the anti-SD sequence was inoculated  
and used to create an SD-gfp cell library using oligo P329 that 
included a 6-bp randomized sequence (N6) covering the SD 
sequence. Six consecutive rounds of recombineering were per-
formed, resulting in <1% fluorescent colonies. In a parallel 
recombineering experiment using oligo P325, which contained 
the consensus SD sequence (AGGAGG), 28% of the cells were 
fluorescent after six rounds of recombineering. This suggests that 
the SD-gfp cell library contained about 30% recombinant cells, 
with only a fraction of the introduced sequences (<1%) resulting 
in visual GFP levels.

Cell sorting of SD-gfp library using flow cytometry. We ana-
lyzed an exponentially growing culture containing the SD-gfp 
cell library by flow cytometry in order to bin cells according to 
their level of fluorescence. Cell sorting was done in precision 
single-cell mode with an event rate of around 3,000 per second. 
Sorted cells were collected in microtiter plates containing 100 µl  
of LB. For cell sorting, 16 gates were made so that cells with sim-
ilar fluorescence levels were collected in the same bin. Sorting 
resulted in 50,000 events in gates P6–P11, 20,000 in gates P12–P15,  
5,000 in gates P16–P20 and 1,000 in gate P21. The collected cells 
were grown overnight in 1.5 ml of LB with shaking at 37 °C.  
We stored 0.5 ml of cell culture from each library as glycerol stock 
at −80 °C, and we harvested 0.6 ml of cell culture for extraction of 
chromosomal DNA.

Next-generation sequencing of SD sequence–containing  
amplicons. We extracted chromosomal DNA using the DNeasy 
Blood and Tissue kit (Qiagen) and eluted it in 200 µl of elution 
buffer. We subsequently used 1 µl of DNA as a template for PCR 
amplification. For each of the individually sorted pools, we used a 
specific barcoded primer set (Supplementary Table 5) to amplify 
a 103-bp DNA fragment containing the SD-sequence region of 
interest. We purified PCR products using the DNA Clean and 
Concentration kit (Zymogen Research, USA). We quantified the 
PCR fragments using a Qubit 2.0 Fluorometer (Life Technologies) 
and pooled them in equal quantities to a total amount of 1 µg.  
We barcoded the PCR pool using Illumina TruSeq Adaptor Index 1,  
amplified it according to the TruSeq manual, and sequenced it 
on an Illumina MiSeq sequencer using 150-bp paired-end reads 
(SciLifeLab, Karolinska Institutet Science Park, Sweden).

Determination of fluorescence levels of individual SD-gfp 
strains. From each of the 16 sorted bins, we isolated eight  
individual colonies by re-streaking twice on LB-agar plates.  
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The SD-sequence region of interest was sequenced, and a total of 
106 individual strains were identified. The SD sequences of the 
individual isolates are shown in Supplementary Table 2.

Single colonies grown on M9 minimal plates were inoculated in 
150 µl of M9 minimal media supplemented with 0.2% glucose and 
grown overnight at 37 °C with shaking in 96-well microtiter plates 
in a BioTek ELx808 absorbance microplate reader. We transferred 
4 µl of the overnight cell cultures to 146 µl of M9 media and incu-
bated them in 96-well microtiter plates with shaking at 37 °C until 
the cultures reached an OD450 between 0.3 and 0.4. Finally, we 
transferred 6 µl of each culture to a flat-bottom microtiter plate 
containing 200 µl of 1× PBS for flow cytometry measurement by 
FACS Fortessa.

Flow-seq data analysis. We used Qiime (http://qiime.org/) 
to demultiplex the reads using the custom sequence barcodes 
(Supplementary Table 5) at either 5′ or 3′ ends of the reads, 
and to extract the SD sequences (split_libraries_fastq.py, split_
libraries.py and andjust_seq_orientation.py scripts in Qiime). 
The following options were used for split_libraries.py: allow five 
mismatches in the regions flanking the SD sequence; minimum 
read length, 50; maximum read length, 200. We determined the 
numbers of distinct SD sequences in each demultiplexed flow-
sorted bin using a custom Python script that is available upon 
request. A total of 3,880 distinct SD sequences were detected at 
least once in the whole data set. The SD sequence counts in each 
flow-sorted bin are available in Supplementary Table 6.

We used the SD sequence–count table to derive estimates 
of GFP expression for each SD sequence using custom Matlab 
scripts. First, a single Gaussian curve was fit to the major peaks 
in the signal-intensity curves for each flow-sorted bin to obtain 
the mean (eb) and variance of the GFP expression for each bin b  
(Supplementary Fig. 8). Data for gate P5 were excluded from 
further analysis, as the estimated mean expression level for this 
gate was higher than that for the next gate, P6. To estimate the 
level of GFP expression for each SD sequence, we applied the 
method first introduced by Sharon et al.27. This method computes 
the weighted mean expression level of SD sequence s (fs) using 
the formula fs = (Σb nb,s/nb × eb)/(Σb nb,s/nb), where eb is the mean 
value of the Gaussian fit mentioned above, nb is the total count 
of all SD sequences in bin b, and nb,s is the count of SD sequence 
s in bin b.

The distribution of total merged read counts across all bins 
for each SD sequence was bimodal (Supplementary Fig. 9) with 
a peak at ~1,000 reads and a second peak at one read. To obtain 
high-confidence estimates of GFP expression levels from Flow-
seq, we included only SD sequences with at least 50 merged 
reads across all flow-sorted bins. The final high-confidence data 
set included 3,087 SD sequences (Fig. 1c). The full list of GFP 
expression levels for each SD sequence estimated using Flow-seq  
is provided as Supplementary Table 1. Supplementary  
Table 2 contains a list of the 106 single-clone expression levels 
measured directly, estimated using Flow-seq and computed using 
RBS Calculator version 2.0 (Fig. 1e,f).

Calculation of RBS Calculator–predicted translation-initiation 
rates of SD sequences. In order to compare the experimental 
expression levels with levels obtained using a state-of-the-art com-
putational model, we used RBS Calculator15. We calculated the 

expected translation-initiation rate of each of the SD sequences 
using an online version of the calculator (version 2.0) in reverse-
engineering mode.

Design of algorithm to modify gene expression levels.  
The EMOPEC algorithm is published online at http://emopec.
biosustain.dtu.dk, and the source code with comments is avail-
able in the Supplementary Software. The web server input 
is two sequences divided into the coding sequence and the 5′ 
untranslated region, where the ribosome-binding site is located. 
Optionally, a sequence containing design constraints may be 
supplied in IUPAC degenerate base notation format. Users can 
adjust the prediction of the SD sequence either by choosing to let 
EMOPEC predict the location of the SD sequence or by directly 
supplying the spacing distance given as the number of nucleotides 
between the SD sequence and the initiation codon.

In the case of automatic prediction, EMOPEC maximizes the 
predicted expression value by looking at all potential SD sequences 
with spacing in the range of 1–13 nt. The predicted expression, 
which is maximized, is given by the following equation: 

Expression(SD,Spacing) EMOPEC(SD) spacing= − ×∆G c

where EMOPEC(SD) is a table lookup in the EMOPEC library 
(in log(GFP)), ∆Gspacing is a spacing penalty18, and c is a constant 
used to scale the penalty to the arbitrary units used by EMOPEC. 
We estimated c as 0.235 by maximizing the recovery rate of val-
ues from the EMOPEC library when applied to the original GFP 
sequence. We accomplished this by scanning a large number of 
c values and choosing the value that led to correct prediction of 
the largest number of SD sequences.

The predicted expression and library expression values are 
given as a percentage of the maximum possible expression value, 
calculated with the equation 

Expression SD,Spacing

Expression SD,Spacing Expre
percent( )

( )
=

− sssion TTGGGC,Spacing
Expression AGGAGA,Spacing Expressio

( )
( ) − nn TTGGGC,Spacing( )

where TTGGGC is the lowest expression level in the EMOPEC 
library and AGGAGA is the highest expression level. Finally, oli-
gos are created using MODEST19, with the new SD sequences as 
input and the original sequence as the reference sequence.

The library is created between two setpoints, which the user 
chooses by selecting one of three options: “up,” which will start the 
library at the predicted expression level and end it at the highest 
possible expression level; “down,” which will start at the lowest 
possible expression level and end at the predicted expression level; 
and “both,” which will ignore the predicted expression level, start-
ing the library at the lowest possible expression level and ending 
it at the highest possible expression level.

The tool calculates the library by first creating a list of linearly 
spaced target expression levels on the basis of the given options. 
For instance, if “both” is chosen and the library size is set to 4, 
relative levels of 100%, 75%, 50% and 25% are set as target expres-
sion values. For each target expression level, ten candidate new 
SD sequences with expression levels centered on the desired new 
target are sampled from the EMOPEC library. For example, given 
50% target expression, SD sequences from TTTGGA with pre-
dicted relative expression of 49.59% to TGCGGT with 50.25% 

http://qiime.org/
http://emopec.biosustain.dtu.dk
http://emopec.biosustain.dtu.dk
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relative predicted expression and eight additional sequences in 
between are selected as candidate SD sequences. It then calculates 
the secondary structure energy delta (∆∆G) by estimating the 
folding minimum free energy of the original and mutated full 
sequence using RNAfold from the ViennaRNA package28. The SD 
sequence with the lowest ∆∆G is chosen as the target sequence.

If a sequence with constraints is supplied, only the subset of 
sequences in the EMOPEC library satisfying the constraints are 
considered. This may lead to unevenly spaced or smaller libraries 
than expected, and the user is responsible for the final evaluation 
of the library.

The algorithm is implemented in Python 2.7 using the SWIG 
(http://www.swig.org/) interface to the ViennaRNA package28 
(http://www.tbi.univie.ac.at/RNA/). The server front-end is 
implemented using the AngularJS framework (https://angularjs.
org/), sending JSON requests to a back-end server implemented in 
Python 2.7 using the Flask framework (http://flask.pocoo.org/).

We used EMOPEC to design ten MAGE oligos for all genes in  
E. coli K12 MG1655, predicted to result in linearly spaced  
expression levels from a low level to the maximum predicted 
level possible by changing the SD sequence. This led to a resource 
(available at http://emopec.biosustain.dtu.dk/optilib and in 
Supplementary Table 3) comprising 40,526 different MAGE 
oligos, which enabled exploration of the protein expression  
levels of all currently predicted protein-coding genes in E. coli 
K12 MG1655.

The SD-sequence location in the input sequence is either speci-
fied directly by the user or found by a search of the leading region 
for the SD sequence with the highest expression level multiplied 
by a previously developed penalty function. The library is created 
by first sampling new SD sequences in a linear stepwise manner 
and picking the sequence with the lowest secondary structure 
energy delta compared to the original sequence. The initial sam-
pling is done by calculating the exact values to create a linear 
library and choosing sequences with a maximum deviation from 
the ideal value. The secondary structure energy delta (∆∆G) is 
calculated by folding the original and mutated full sequence 
using RNAfold from the ViennaRNA package28. Oligos are cre-
ated using MODEST19, with the new SD sequences as input and 
the original sequence as the reference sequence.

To assign a value to the remaining SD sequences, we used a 
Random Forest regressor. Each sequence in the EMOPEC data set 
was encoded into a vector containing either 0 or 1 in a one-encoding  
scheme. Each nucleotide was assigned a vector consisting of 
three 0’s and a single 1—that is, C = [1, 0, 0, 0], G = [0, 1, 0, 0],  
T = [0, 0, 1, 0] and A = [0, 0, 0, 1]. An SD sequence was encoded 
by concatenating six vectors corresponding to the six nucleotides 
in the SD sequence, resulting in a final feature vector of length 
24. The Random Forest implementation of the Python package 
scikit-learn (http://scikit-learn.org/) was used to train a Random 
Forest regressor with 100 trees.

To validate the model, we used fivefold cross-validation as well 
as the out-of-bag (OOB) score. We calculated the OOB score by 
predicting all samples individually on a subset of trees in the 
Random Forest in which the particular sample was not used in 
the training. The OOB score was calculated to an R2 value of 0.90. 
We carried out fivefold cross-validation by splitting the EMOPEC 
data set into five equal random subsets. For each subset, the other 
four subsets were used to train a new and independent Random 

Forest. The sequences in the subset not used in the training were 
then predicted using the new model, and the process was repeated 
five times, once for each subset. An R2 value of 0.89 was calculated 
using the cross-validation approach (Supplementary Fig. 2).

Validation of EMOPEC. To test the functionality and perform-
ance of EMOPEC, we used the algorithm to modify the expression 
level of six additional genes: constitutively expressed mCherry 
integrated in the genome of E. coli K12 MG1655, and the native 
E. coli genes on the chromosome lacZ, aceA, can, ppc and aspC. 
EMOPEC was used to design ten different MAGE oligos that 
were predicted to result in ten different, evenly distributed  
protein levels. Seven out of 60 strains were not constructed or 
measured, because no mutants were isolated after the MAGE 
cycles, and we concluded that 53 strains and >8 EMOPEC designs 
for each gene were sufficient. λ-Red recombineering using pMA1 
was performed as described above to introduce the sequences. 
We subsequently quantified mCherry expression by fluorescence 
measurement and LacZ expression by measuring β-galactosidase 
enzymatic activity according to the methods described by Griffith 
and Wolf29. We measured amounts of AceA, Can, Ppc and AspC 
using the proteomics methods described below. EMOPEC was 
used with an external, previously published data set in which a 
plasmid system with an SD sequence is varied, and expression of 
downstream mRFP1 was measured20. The measurements of the 
original data set were processed with the EMOPEC algorithm, and 
the filtered sequences with a secondary structure of <2 kcal were 
plotted, showing R2 = 0.78. For comparison, the secondary struc-
ture is on average 0.52 kcal for most of the designed sequences for 
all E. coli genes (Supplementary Fig. 3). To calculate the percent-
age of designed sequences that had measured protein levels within 
twofold of the desired target level, we divided the value of the 
point on the linear regression fit corresponding to the predicted 
expression by the measured values, for all pairs of predicted and 
measured values. If the resulting value was between 0.5 and 2, the 
measurement was counted as within twofold. We also predicted 
the expression levels of the constructs using RBS Calculator15 
to compare predicted versus observed expression levels between 
EMOPEC and RBS calculator (Supplementary Fig. 7).

Preparation of E. coli cells for proteomics. Frozen cells were kept 
at −80 °C for up to 4 weeks, after which they were thawed on ice 
and pelleted by centrifugation at 15,000g for 10 min. The superna-
tant was removed, and 100 µl of urea (8 M, 75 mM NaCl, 50 mM 
Tris-HCl, pH 8.2) was added to the samples together with two 
3-mm zirconium oxide beads (Glen Mills, NJ, USA). Cells were 
disrupted using a Mixer Mill (MM 400 Retsch, Haan, Germany) 
for 2 min at 25 Hz. The samples were then kept at 4 °C for 30 min 
followed by 2 min at 25 Hz in the Mixer Mill. An additional 100 µl  
of urea was added, after which samples were subjected to 2 min 
at 25 Hz in the Mixer Mill and then left for 30 min at 4 °C and a 
final 2 min at 25 Hz in the Mixer Mill. Samples were centrifuged 
at 15,000g for 10 min, and 100 µl of supernatant were collected 
and diluted with 400 µl of 25 mM ammonium bicarbonate, after 
which the volume was reduced to 100 µl using a 3 kDa–cutoff 
filter. Protein concentrations were measured, and 100 µg were 
used for tryptic digestion. Prior to digestion, 5 µl of 100 mM 
DTT was added and samples were kept at 37 °C for 45 min, after 
which 10 µl of 100 mM iodoacetamide was added and samples 

http://www.swig.org/
http://www.tbi.univie.ac.at/RNA/
https://angularjs.org/
https://angularjs.org/
http://flask.pocoo.org/
http://emopec.biosustain.dtu.dk/optilib
http://scikit-learn.org/


©
20

16
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3727nature methods

were kept in the dark for 45 min. Tryptic digestion was carried 
out for 8 h, after which 10 µl of 10% TFA was added and samples 
were StageTipped using C18 (Empore, 3M, USA) according to 
the procedure described by Rappsilber et al.30.

Nanoscale LC separation of the tryptic digested samples, each 
containing 1 µg of protein, was performed using a nanoACQUITY 
system (Waters, USA) equipped with a Symmetry C18 5-µm,  
180 µm × 20 mm precolumn and a nanoACQUITY BEH130 C18  
1.7-µm, 75 µm × 250 mm analytical reversed-phase column 
(Waters, USA). Initially the samples were trapped on the pre-
column using mobile phase A, consisting of 0.1% formic acid 
in water with a flow rate of 8 µL min−1 for 4 min. Mobile phase  
B consisted of 0.1% formic acid in acetonitrile. A reversed-phase 
gradient was used to separate peptides going from 5% to 40% 
acetonitrile in water over 90 min with a flow rate of 250 nL min−1 
and a constant column temperature of 35 °C.

Eluates were immediately sprayed into a Synapt G2 (Waters, 
Manchester, UK) Q-ToF instrument operated in positive mode 
using electrospray ionization with a NanoLock-spray source. 
Leucine encephalin was used as a lock mass, supplied from 
the internal fluidics system of the mass spectrometer. The lock 
mass channel was sampled every 60 s. For all samples, the mass  
spectrometer was operated in resolution mode, with contin-
uum spectra being acquired. The mass spectrometer alternated 
between low- and high-energy modes using a scan time of 0.8 s 
for each mode over 50–2,000 Da. In the low-energy MS mode, 
data were collected at a constant collision energy of 4 eV. In the 
elevated-energy MS mode, the collision energy was increased 
from 15 to 40 eV.

Proteomics data analysis. We obtained protein identification and 
quantification data by using Progenesis QI for Proteomics ver-
sion 2.0 and the E. coli K-12 MG1655 UniProt proteome database  
(ID UP000000625). Only unique peptides of the proteins of inter-
est were used for quantification, enabling comparisons of pro-
tein abundance across the different samples31. Pre-established  
conditions for exclusion of samples were a protein level below the 
detection threshold for >75% of the samples.

RNA extraction. We transferred 5 µl of overnight cultures to 5 ml 
of LB-ampicillin and allowed them to grow in 50-ml Falcon tubes 
to an OD600 of 0.4–0.6 (mCherry); the cultures were then vortexed 
and placed on ice for 5 min before being centrifuged for 2 min at 
6,500g, after which cell pellets were frozen in liquid nitrogen and 
stored at −80 °C until RNA extraction. Cells were digested for  
5 min at 25 °C in TE buffer containing 1 mg ml−1 lysosome and  
1 mg ml−1 proteinase K, after which total RNA was extracted using 
the RNeasy mini kit (Qiagen Sciences, Maryland, USA) according 
to the manufacturer’s instructions. Extracted RNA was digested 
with DNase I, and extraction was followed by a phenol:chloro-
form extraction and ethanol precipitation, after which PCRs were 

performed on non–reverse transcripts to verify the removal of 
DNA. The integrity of the RNA was verified on 1% agarose gels, 
and purity and quantification of total RNA were assessed on a 
Nanodrop 2000 (Nanodrop Thermo Scientific, USA).

Reverse-transcription quantitative PCR. Random primers 
were annealed with 0.5 µg of total RNA using the SuperScript 
III First-Strand synthesis system for RT-PCR (Invitrogen  
Corp., Carlsbad, CA, USA) according to the manufacturer’s 
instructions. Synthesized cDNA was diluted tenfold, and 2 µl of 
diluted cDNA was used as a template for quantitative PCR using 
SYBR GreenER qPCR SuperMix Universal (Invitrogen Corp., 
Carlsbad, CA, USA) and the Mx3000P qPCR system (Agilent 
Technologies, Santa Clara, California, USA) according to the 
manufacturer’s instructions. Specific amplification of target 
genes was 1 cycle at 50 °C for 2 min, 1 cycle at 95 °C for 10 min, 
and 40 cycles at 95 °C for 15 s, 60 °C for 1 min, and 82 °C for 
10–15 s. The 82 °C step was introduced to minimize the effect of 
primer dimers, which was observed during melting-curve analysis  
for the reference gene frr. The relative expression levels of indi-
vidual transcripts were determined according to the method 
described by Pfaffl32, using frr as a reference gene, as has been  
done previously33.

Code availability. The source code for EMOPEC, including the 
web server, is available as Supplementary Software.

Reproducibility. Sample sizes for each experiment were chosen 
on the basis of initial pilot experiments and similar experiments 
in the literature. No blinding or randomization was used in the 
experiments conducted. Data from bin P5 in flow cytometry 
experiments were excluded from further analysis because the 
estimated mean expression level for this gate was higher than 
that for the next gate, P6.
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