
The ISME Journal
https://doi.org/10.1038/s41396-020-00848-z

ARTICLE

Metabolic modeling predicts specific gut bacteria as key
determinants for Candida albicans colonization levels

Mohammad H. Mirhakkak1 ● Sascha Schäuble 1
● Tilman E. Klassert2 ● Sascha Brunke3 ● Philipp Brandt4 ●

Daniel Loos 1
● Ruben V. Uribe5 ● Felipe Senne de Oliveira Lino5

● Yueqiong Ni1 ● Slavena Vylkova4 ●

Hortense Slevogt2 ● Bernhard Hube3,6 ● Glen J. Weiss7 ● Morten O. A. Sommer 5
● Gianni Panagiotou 1

Received: 15 April 2020 / Revised: 6 November 2020 / Accepted: 18 November 2020
© The Author(s) 2020. This article is published with open access

Abstract
Candida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-
like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate
bacterial-fungal metabolic interactions in the gut as determinants of fungal abundance. We optimized the predictive capacity
of our model using wild type and mutant C. albicans growth data and used it for in silico metabolic interaction predictions.
Our analysis of more than 900 paired fungal–bacterial metabolic models predicted key gut bacterial species modulating C.
albicans colonization levels. Among the studied microbes, Alistipes putredinis was predicted to negatively affect C. albicans
levels. We confirmed these findings by metagenomic sequencing of stool samples from 24 human subjects and by fungal
growth experiments in bacterial spent media. Furthermore, our pairwise simulations guided us to specific metabolites with
promoting or inhibitory effect to the fungus when exposed in defined media under carbon and nitrogen limitation. Our study
demonstrates that in silico metabolic prediction can lead to the identification of gut microbiome features that can
significantly affect potentially harmful levels of C. albicans.

Highlights
● Genome-scale model reconstruction of C. albicans with 89% growth accuracy.
● Mutualism and parasitism are the most common predicted C. albicans-gut bacteria interactions.
● Metagenomic sequencing and in vitro assays reveal modulators of fungal growth.
● Alistipes putredinis potentially prevents elevated C. albicans levels.

Introduction

The fungus Candida albicans is found on the mucosal
surfaces of at least 50–70% of healthy adults [1] and is a
classic opportunistic pathogen. It resides as a harmless
commensal but can become pathogenic in immunocom-
promised patients or under microbial dysbiosis [2, 3]. C.
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albicans causes up to 300,000 deaths per annum world-
wide with an increasing number of individuals at risk [4].
Therefore, efforts to understand drivers of commensal or
pathogenic outcomes of this fungus have intensified.

Recent studies found links between alterations in the
composition and functionality of the gut microbiota and
development of local or systemic C. albicans infections
[5, 6]. A microbial tryptophan metabolic pathway appears
to preserve immune physiology at mucosal surfaces by
promoting indole-3-aldehyde production that contributes to
IL-22 transcription [7]. Other gut microbial products such
as bacteriocin are directly active against C. albicans [8]. A
study of rectal samples from a cohort of 150 children linked
gut microbiota to Candida prevalence, with a relative
reduction in Candida species in children who received
probiotics along with broad spectrum antibiotics [9]. Nei-
ther the dynamics of Candida species in the human gut nor
the specific microbial contributors to the observed reduction
have been studied, however. Based on these diverse find-
ings, the commensal status of C. albicans appears to be
related to the global taxonomy and functionality of the host
microbiome.

A promising approach to analyzing interactions between
C. albicans and gut microbial species uses genome-scale
metabolic models (GSMMs) GSMMs have improved the
biotechnological productivity of bacteria [10–12], revealed
plant metabolic processes [13], and elucidated the Crabtree
effect in yeast [14–16] and the Warburg effect in cancer
cells [17]. Recent pioneering studies have developed high-
quality GSMMs for gut bacteria that enable in silico ana-
lysis of gut metabolic functions and interactions [18, 19].
These resources have advanced the study of gut microbes
and their respective pairwise interactions but have not yet
been used to study interactions with opportunistic fungal
pathogens such as C. albicans. The potential of gut
microbes to influence the overall fitness of the fungus must
be elucidated to support development of prophylactic or
therapeutic strategies to control C. albicans.

We constructed a GSMM of C. albicans, starting with an
automatically generated template model [20, 21]. We sub-
stantially improved its performance with manual curation
and adaptation to phenotype microarray experiments. We
used both, publicly available data [22] and new phenotypic
microarray data for both wild type and mutant C. albicans
strains. Our model predictions surpassed those of other
GSMMs for species closely related to C. albicans that could
serve as proxies for this fungus. We used the GSSM to
simulate in silico pairwise metabolic interactions between
C. albicans and each of 910 gut bacteria models. We
challenged our predictions in vitro by growing C. albicans
in carbon or nitrogen limited defined media in the presence
of predicted fungal growth affecting metabolites. We further
validated our results with stool samples from 24 human

subjects, using metagenomics and internal transcribed
spacer (ITS) sequencing to identify bacterial species asso-
ciated with significant effects on C. albicans metabolism
and growth. Finally, we assessed fungal growth in bacterial
spent media experiments.

Materials and methods

Model reconstruction

To generate the C. albicans GSMM, we used the C. albicans
metabolic model automatically reconstructed by the CoReCo
pipeline as a template. In brief, CoReCo combines infor-
mation from multiple data sources into a unified database and
evaluates the probability of any reaction occurring in the
target organism by computing a score for each enzyme based
on sequence homology [20]. We refined the model in four
consecutive steps (Fig. 1A) that included the identification
and removal of duplicate metabolites, determination and
resolve of erroneous energy-generating cycles [23], adapta-
tion to phenotypic microarray data and exchange reaction
modification based on flux variability analysis (FVA, Sup-
plementary Material, Supplementary Data S1) [24].

Pairwise simulations

Pairwise simulations adapted from Heinken and Thiele [25]
were performed using 818 AGORA 1.03 GSMMs [18]
downloaded from (https://www.vmh.life) and 92 CarveMe
gut bacterial GSMMs [19]. In brief, the C. albicans GSMM
was paired to individual bacterial GSMMs and subse-
quently optimized by simultaneously maximizing C. albi-
cans and bacteria biomass reactions. Interaction type was
determined by taking the optimized growth rate in the pair
compared to the growth rate of the individual GSMM into
account (Supplementary Material).

To evaluate dissimilarities between promoters and inhi-
bitors of C. albicans from different phyla, Bray-Curtis
distances were calculated based on flux distributions
of individual bacteria from pFBA simulations on different
media [18] (https://www.vmh.life, Supplementary
Table S1). Fisher’s exact tests were calculated to determine
if a specific phylum was enriched with species that either
inhibited or promoted C. albicans growth. The python code
and metabolic models for simulating pairwise GSMMs are
available at https://github.com/mohammadmirhakkak/Ca
ndida-albicans-microbiome-interaction.

Phenotypic microarray experiments

C. albicans wild type and multiple mutant strains (Table 1)
were pre-grown on YPD (1% yeast extract, 2% peptone,
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2% glucose, 2% agar) plates. Phenotype microarrays were
performed by using microarray plates, reagents and devi-
ces according to the manufacturer Biolog, Inc. (Hayward,
CA, USA) instructions. Briefly, C. albicans cells were
taken directly from YPD agar plates and diluted in sterile
dH2O to 62% transmittance as measured by a turbidimeter
(Biolog, Inc.). Next, cells were combined with inoculating
fluid IFY-0 base (1.2x), redox dye mix D (75x) (Biolog
Inc.), and further supplemented with either Glucose, L-
glutamic acid, potassium phosphate or sodium sulfate
(Sigma-Aldrich) were required. 100 µl of the respective
mixture (83.33% IFY-0 base, 1.33% redox dye D, 8.33%

supplements, 2.08% cells, and if required 3.12% Glucose
and dH2O) was added to each well of a Biolog Phenotype
Microarray 96-well plate for fungi to test for metabolic
activity in the presence of carbon sources (PM1 and
PM2A), nitrogen sources (PM3B), and phosphorus and
sulfur sources (PM4A). The phenotype microarrays were
incubated at 30 °C in an OmniLog multiple plate reader in
order to prevent hyphae formation that otherwise perturb
growth measurements. Reduction of the redox dye, an
indicator for metabolic activity, was measured kinetically
every 15 min at an OD of 750 nm for 24–48 h. Each
experiment was performed twice. Data analysis was done

Table 1 Selected Candida albicans strains for phenotypic microarrays experiments.

Strain Genotype Reference

SC5314 Prototroph [65]

CEC2908 ura3Δ::λimm434/ura3Δ::λimm434 his1Δ::hisG/HIS1 arg4Δ::hisG/ARG4 ADH1/adh1::pTDH3-carTA::SAT1 [66]

SN87 leu2Δ/leu2Δ his1Δ/his1Δ URA3/ura3Δ::imm434 IRO1/iro1Δ::imm434 [67]

SN152 leu2Δ/leu2Δ +LEU2, his1Δ/his1Δ +HIS1, arg4Δ/arg4Δ, URA3/ura3Δ::imm434, IRO1/iro1Δ::imm434 [68]

JRC12 arg1Δ::FRT/arg1Δ::FRT [69]

JRC38 arg3Δ::FRT/arg3Δ::FRT [69]

CFG318 NEUT5L/neut5l::FRT, put2Δ/put2Δ [47]

Fig. 1 Candida albicans GSMM reconstruction. A Based on a
template [20] a manually curated metabolic model was achieved
in several steps. Adjustment of model features such as modifying
metabolic reactions or resolving energy cycles and model impact are
indicated. Relative growth rates show relative differences to the tem-
plate GSMM growth rate. B Benchmark results for model optimization
using phenotypic microarray data for C. albicans growth. Light gray

bar indicates accuracy on carbon media without arginine mutants
that show growth on phenotypic microarray data without additional
arginine (see main text for details). Accuracy was calculated as number
of growth experiments that agree with model predictions across
all growth experiments that were simulated. C carbon, N nitrogen,
P phosphor, S sulfur. C Assigned pathway distribution of the
final model.
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using the R opm package for OmniLog phenotype
microarray datasets [26].

In vitro experiments

Growth of C. albicans in presence of metabolites

To determine the effect of the metabolites on C. albicans
growth, the clinical isolate SC5314 was grown overnight
at 30 °C in YPD complex medium (1% yeast extract, 2%
peptone, 2% glucose). 30 °C were chosen to prevent
hyphae formation provoked at higher temperatures, which
otherwise perturb growth curve measurements. Yeast cells
were washed three times with sterile H2O by centrifuga-
tion for 5 min at 4,200 × g. Test medium was composed of
1× yeast nitrogen base (YNB, Formedium) with either
(standard) 0.25% NH4SO4/2% glucose, (C limited) 0.25%
NH4SO4/0.25% glucose, (N limited) 0.008% NH4SO4/2%
glucose, or (C/N low) 0.016% NH4SO4/0.5% glucose.
Test substances were obtained from Sigma-Aldrich
and were dissolved in H2O at (nitrite) 156 mM, (desoxy-
adenosine) 100 mM, (sodium formate) 1 M, (putrescine)
500 mM, (L-asparagine) 100 mM, or (L-proline) 15.6
mM. Assays were performed as 1:2 dilution series in
96 well plates (TPP, flat bottom) and were composed of
180 µl test medium, 10 µl test substance, 10 µl yeast
solution (1:10 dilution in H2O, final OD600 of 0.1). Initial
pH was verified to be at the expected ≈5.8. Growth
was followed over at least 24 h using a Tecan infinite 200
multiwell plate reader set to 30 °C, with measurements at
600 nm every 15 min following 10 s of orbital shaking.
All measurements were performed in triplicate from
independent overnight cultures at different days. Growth
was evaluated as area under the curve (AUC, trapezoidal
method using GraphPad prism 8.1.2; baseline at mean of
first three measurement) over 24 h and expressed as per-
cent change compared to control setups (H2O instead
of test substance) in the same medium. AUCs were
determined for three replicates, and mean change com-
pared to controls is shown with standard deviations (SD)
as error bars.

Strains and culture conditions

A. putredinis (DSM17216), B. ovatus (ATCC 8483), B.
vulgatus (ATCC8482), E. lenta (DSM2243), P. copri
(DSM18205), R. torques (ATCC27756), E. coli (MG1655
and BAA-1161), P. corporis (DSM18810), C. albicans
(SC5314/ATCC MYA-2876), C. albicans (ATCC 10231)
and C. albicans (ATCC 18804) were grown at 37 ˚C under
anaerobic conditions (gas mixture, 95% N2 and 5% H2) in
prereduced modified GAM (mGAM, Nissui Pharmaceutical
Co. Ltd.) broth for liquid cultures or broth supplemented

with agar for growth on plates. 37 ˚C and anaerobic con-
ditions were chosen to resemble best the natural environ-
ment of these gut bacteria.

Sterile bacterial spent media

Bacterial strains were grown for 48 h in GAM broth, then
subcultured 1:50 in fresh GAM broth and grown for 48 h in
anaerobic conditions at 37 °C to resemble the gut environ-
ment. Cultures were centrifuged at 11,000 × g for 5 min and
spent media removed without disturbing the pellet. Spent
media were passed through a 0.2 µm syringe filter to remove
remaining bacteria. After filtration, the pH of the spent
media was analyzed using an electronic pH-meter (Sup-
plementary Table S2). 1% (v/v) of Phosphate-buffered
saline (PBS) was added in each experiment to maintain a
constant pH.

Growth assays

An overnight culture of C. albicans was grown aerobically
in mGAM media at 37 °C. Aerobic conditions were chosen
to enable sufficient growth of C. albicans. Cells were then
subcultured at a 1:1000 dilution into 150 μl of sterile spent
bacterial media in different proportions: 75 and 100%. The
spent media were diluted in fresh 25% mGAM broth for
75% spent media proportion and PBS (1% v/v), accord-
ingly. The fermentation was performed in flat-bottom, 96-
well plates. The plates were incubated for 24 h at 37 °C,
with continuous orbital shaking at 900 rpm. 37 °C did not
induce notable hyphae formation in growth assays and
therefore did not perturb growth measurements on spent
media. Cell densities were measured every 10 min at optical
density 600 nm (OD600) using a microtiter reader (BioTek
ELx800). Growth rates were calculated by plotting log of
OD measurements in log phase and calculating the slope of
the time points in log phase where r2 was closest to 1, using
at least 12 time points over 2 h. Growth inhibition was
determined as the growth rate of C. albicans in spent bac-
terial media normalized to the growth rate in the corre-
sponding mGAM fresh media dilution.

Microbiome profiling

Bacterial and fungal species profiles were generated for
stool samples from a human cohort of 24 individuals at
Western Regional Medical Center, Goodyear, Arizona,
USA. Samples were collected after signed informed consent
under a protocol approved by the Western Institutional
Review Board (WIRB protocol number 20140271, Pallyup,
Washington, USA). All subjects had been diagnosed with
different types of cancer, with heterogeneous stage, treat-
ment, and histological findings. Metagenomic sequencing
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was performed at BGI, Hong Kong S.A.R., China, as
described in Qin et al. [27], and ITS amplicon sequencing of
the mycobiome was performed at ZIK Septomics, Uni-
versity Hospital Jena, Thuringia, Germany (extended details
in Supplementary Material). Bacterial reads were obtained
using 150-bp Illumina PE whole metagenome sequencing.
Species profiling was by MetaPhlAn 2.7.6 [28]. after
applying an in-house pipeline for quality control [29] and
removal of human reads. Fungal reads were obtained using
250-bp Illumina PE ITS1 amplicon sequencing (extended
details in Supplementary Material). The DADA2 ITS
Pipeline Workflow 1.8 was followed for amplicon sequence
variants [30]. Mothur classifier [31] called from QIIME
1.9.1 [32] and the UNITE database 7.2 [33] were used for
fungal taxonomic assignments. Bacterial species were
considered for further analysis, if a GSMM model was
available, the species was part of the Open Tree of Life 10.4
[34] and it was prevalent in at least 4 of 26 samples. Cor-
relations of bacterial abundance and growth rates to C.
albicans abundance were tested using two-sided Spearman
correlation (p < 0.05). The bacterial and fungal profiles are
available under the ENA Study Nr. PRJEB33756.

Partial spearman correlation was computed within R
using the package PResiduals (v0.2–6).

Ordinal regression model

Relative abundance values for C. albicans from human
samples were grouped into two sets determined by a 20%
relative abundance threshold. To predict C. albicans
abundance levels, three binomial ordinal regression mod-
els were generated using as independent variables the
bacterial abundance values, predicted interaction coeffi-
cients, and products of multiplying abundance values by
predicted interaction coefficients. For model building, we
either selected five bacterial species that significantly
correlated with C. albicans by relative abundance and two
that significantly correlated by GRiD value, or selected
bacteria based on whether they increase performance as
described in the main text. The predictive power of each
model was assessed by determining the true/false positive/
negative and accuracy values and by analyzing receiving
operating characteristic curves using the R package ROCR
(ver. 1.0–7).

Results and discussion

Reconstruction of a Candida albicans genome-scale
metabolic model

To develop a C. albicans GSMM, we started with a
model automatically generated by the Comparative

ReConstruction (CoReCo) pipeline [20]. The initial C.
albicans CoReCo model (BioModels ID 1604280052)
comprised 2770 metabolites and 3298 reactions, of which
3150 were network and 148 transport reactions (Fig. 1A). In
addition to a unique reaction set, the initial CoReCo GSMM
for C. albicans contained multiple nontrivial duplicate
reactions and metabolites. Typically, these involved mar-
ginally differing metabolite names such as L-Glutamate and
Glutamate that had not been automatically detected by the
CoReCo platform (Fig. 1A, Supplementary Data S1, Tables
S1, S3, and S4).

We also curated energy-generating cycles (EGCs) that
created energy compounds such as ATP without requiring
nutrient uptake [23]. We resolved these infeasible EGCs by
identifying and correcting implausible reaction directional-
ities using metabolic pathway databases such as BioCyc
(Supplementary Table S4). For example, in our initial C.
albicans model, we found an ATP-producing EGC that
involved phosphate rather than pyrophosphate as indicated
by BRENDA, Biocyc and KEGG databases. Correcting the
involved reaction acetoacetate:CoA ligase resolved this
particular EGC and additional EGCs while maintaining a
viable biomass flux. We corrected six reactions by either
changing metabolite usage or reaction directionality
based on KEGG or BioCyc information (Supplementary
Table S4). Resolving EGCs also reduced the flux through
the biomass reaction towards 1.4, which is closer to the
biomass reaction flux for other fungal models such as the
yeast consensus model [35, 36] (Fig. 1A).

Next, we adapted our model to multiple phenotypic
microarray growth experiments of C. albicans. These
comprise up to 1440 different defined media experiments
with diverse carbon, nitrogen, phosphorus or sulfate sour-
ces. We used a publicly available dataset with different C.
albicans phenotypes [22] and created additional phenotypic
microarray growth experiments including several mutant
strains for e.g., different arginine biosynthesis steps (see
Methods for details). Of the metabolites in the dataset, 455
mapped to metabolites in our C. albicans GSMM. First, we
adapted our model to growth experiments that were in
agreement between data from Ene et al. [22] and our own
prototrophic C. albicans wild type strain SC5314 dataset for
C. albicans. Of note, using only compatible growth mea-
surements ensured robust growth information across dif-
ferent temperatures applied in our and in the published data
by Ene et al. [22] (cf. Materials and Methods). Second, we
adapted our model to all phenotypic growth experimental
data of C. albicans mutant strains for those growth condi-
tions that yielded the same results for both our wild type and
the Ene et al. dataset in the prior step (Supplementary
Table S4). These refinement steps included, for example,
enabling ammonia production from urea or via lysine
degradation, which was not initially present in our model
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(Supplementary Tables S4 and S5). Based on the growth
data, we added 107 potentially feasible exchange reactions
involving metabolites associated with C. albicans growth.
By applying flux variability analysis [24] we also identified
five exchange reactions that shuttle 4-aminobenzoate, foli-
nic acid, 7,8-diaminononanoate, hexadecanal, and hydro-
gensulfite in and out of the network, but do not support
growth and removed these from the GSMM accordingly.
Overall, we achieved a high compatibility between our
model predictions and the phenotypic microarray growth
experiments with nitrogen and sulfur predictions reaching
above 90% accuracy over all mutant experiments (Fig. 1B,
Supplementary Table S4). Of note, model predictions for
carbon source experiments of three different C. albicans
mutants for arginine biosynthesis (arg1Δ, arg3Δ and
arg4Δ) predicted no growth rate for all carbon sources,
since arginine is essential for the biomass objective func-
tion. Surprisingly, up to 33% of the associated phenotypic
microarray data showed fungal growth, despite the inability
to synthesize arginine due to the knock out. This might be
due to recycling of available proteins in e.g., fungal
vacuoles, as the defined growth media itself does not con-
tain arginine, unless specifically tested. Considering only
growth experiments that show no growth for arginine bio-
synthesis mutant strains our model accuracy for carbon
sources reaches 90% across all tested C. albicans mutant
(Fig. 1B).

Finally, we added gene annotation for ~1500 reactions
and associated individual gene to reaction rules using the
KEGG database. We also added pathway association for all
reactions if available and unified pathway associations
across resources. This step resulted in 83 pathway defini-
tions, including all essential pathways such as in central
carbon, amino acid, and lipid metabolism (Fig. 1C). Over-
all, our model refinements resulted in an addition of 771
genes, led to a final model comprising 3082 metabolic
reactions (−68 compared to draft model) and 2733 meta-
bolites (−37 metabolites compared to draft model) and a
reduced active flux flexibility towards biomass by 11.7%
(Fig. 1A, Supplementary Data S1, Tables S1, S3, and S4).

Pairwise growth simulations predict gut bacteria
modulating essential C. albicans metabolic activity

Next, we generated in silico metabolic interaction predic-
tions about C. albicans coupled to gut bacteria GSMM
models. Using 910 publicly available GSMMs for gut
microbial species [18, 19], we performed pairwise meta-
bolic analysis by linking our C. albicans model with each
gut microbe GSMM [25] (Supplementary Table S1). The
majority of GSMMs from different sources [18, 19] gave
compatible growth rate predictions. To streamline further
analysis, we continued with the assembly of gut organisms

through reconstruction and analysis (AGORA) GSMMs
(https://www.vmh.life) [18] unless models were available
from both sources. In the latter case, we continued with the
CarveMe model versions, since these are refined to bacterial
growth data across 19 different media including extended
pathway gap correction [37] and are based on a manually
curated template model [19].

We simulated growth on two different media composi-
tions that resemble typical Western and high-fiber diets
(https://www.vmh.life) [18]. We identified the interaction
type of each C. albicans-gut microbe pair by analyzing
differences in predicted growth rates compared to growth
rates derived from individual simulations using a flux bal-
ance analysis approach [38] (Methods, Pairwise simula-
tions; Supplementary Material, Table S1). Predictions based
on Western and high-fiber diets gave similar interaction-
type distributions: mutualism (positive growth effect for
both, C. albicans and paired bacteria) and parasitism (here,
negative effect on C. albicans growth, positive growth
effect on bacteria) were the most abundant (>81% of
observed interaction types, Fig. 2A). Other interaction
predictions included commensalism, in which both C.
albicans and bacterial growth was promoted without
negative effects on the respective paired microorganism
(12% and 17% for Western and high-fiber diets, respec-
tively). Only a few examples of parasitism in which C.
albicans exerted negative effects on gut bacteria or
amensalism (no growth effect on C. albicans, negative
effect on bacteria) or neutralism (no growth effect on both,
C. albicans and gut bacteria) were observed. We further
examined prediction accuracy with additional simulations
on standard Gifu anaerobic medium (GAM), which was
used for in vitro validation experiments (Supplementary
Table S6). Growth simulations on GAM were feasible for
only 200 GSMM models, as all other models yielded no
biomass formation. GAM simulations identified parasitism
with negative effects on bacteria for up to 16% of viable
bacteria models, while parasitism with negative effects on
C. albicans (53%) and mutualism (28%) were again the
most commonly occurring interaction types (Fig. 2A). Our
interaction-type analysis based on predicting growth rate
differences for microorganisms in individual and paired
model setups hints that the majority of gut bacteria have
either a mutualistic or a parasitic relationship with C.
albicans irrespective of medium.

To analyze if predicted interactions that promoted or
inhibited C. albicans growth were phylum- or diet-specific
effects, we performed non-metric multidimensional scaling
analysis (NMDS) based on parsimonious flux balance
analysis (pFBA)-derived values for the top 50 promoting
and inhibiting bacterial species [39] (Supplementary
Table S1). The predicted top 50 inhibiting bacterial species
comprised mainly species from the genus Bifidobacterium
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and Listeria, but also included several bacteria from the
Bacteriodetes phylum including e.g., Alistipes putredinis. In
contrast, the predicted top 50 C. albicans promoting bac-
teria included many bacteria with the Bacillus, Bacteroides,

Clostridium or Vibrio genus (Supplementary Table S1).
After removal of a few outliers (up to seven GSMMs
comprising several Escherichia coli strains, among others)
we observed distinct grouping of the Firmicutes phylum on
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both Western and high-fiber diets in the NDMS plots, with a
largely predicted positive effect on C. albicans growth
(Fig. 2B). The majority of Proteobacteria (for 71% of the
respective GSMMs on Western, and 73% on high-fiber diet)
were predicted to show a positive effect on C. albicans
growth as well and show similar flux distributions to some
Bacteroidetes and most Actinobacteria. In contrast, the
predicted impact of Bacteroidetes was primarily negative
(for 87% GSSMs on Western, and 86% on high-fiber diet)
on C. albicans growth with differing flux distributions for
both, Western and high-fiber diet (Fig. 2B). All Actino-
bacteria were predicted to inhibit C. albicans growth as well
and showed similar flux distributions to some Bacteroidetes
and most Proteobacteria for Western and high-fiber diets.
Of note, in silico simulations on GAM revealed notable
differences of flux distributions compared to Western or
high-fiber diet (e.g., 53% of the paired Actinobacteria
showed promoting effects on C. albicans) showing that
GAM based simulations differ to some degree from these
diets (Fig. 2B). The predicted interaction type was sig-
nificantly dependent on phyla (chi-squared test, p value=
2.5e−9 on Western diet) with Actinobacteria (false dis-
covery rate-corrected Fisher’s exact test p value= 7.0e−7)
and Firmicutes (false discovery rate-corrected Fisher’s exact
test p value= 1.5e−5) primarily responsible for the inter-
action type. Altogether, our analyses suggested that under
Western and high-fiber diets, species from specific phyla
had positive (Firmicutes, Proteobacteria), or negative
(Actinobacteria, Bacteriodetes) effects on C. albicans
growth with distinct flux distributions particularly for pre-
dicted growth-promoting Firmicutes species.

Next, we investigated C. albicans-specific reaction fluxes
derived from paired fungal–bacterial model simulations.
Paired bacteria were again selected based on their predicted
impact on C. albicans growth rates such that its difference
between paired fungal–bacterial and individual model
simulations is most pronounced and comprised bacteria

from four different phyla (Fig. 2C, Supplementary Fig. S1).
From the obtained flux distributions C. albicans reactions
were selected based on the most pronounced flux differ-
ences between C. albicans paired with predicted growth
inhibiting and growth-promoting bacterial GSMMs (Meth-
ods, Pairwise simulations). Of note, predicted median flux
differed notably for many reactions comparing the top
inhibiting and promoting bacteria to all paired gut microbes
(Fig. 2C, upper panel). These changes were particularly
present in sugar, fatty acid, folate, and small amino acid
associated pathways, but also in glycolysis and hint towards
a shifted flux in the selected bacteria that dominantly affect
C. albicans growth. Altered reaction fluxes were identified
across major pathways including carbon, amino acid, purine
and fatty acid metabolism. Central metabolites such as
alpha-ketoglutarate, pyruvate and glutamate were balanced
towards net production or consumption, depending on the
paired gut microbe in the in silico simulation. C. albicans
growth is affected by modulating carbohydrate metabolism
[40] or the availability of amino acids such as leucine or
valine [41] and might be used by gut microbiota to prevent
or promote C. albicans growth. Specifically, we predicted
elevated reaction fluxes that consumed L-glutamate in C.
albicans when paired with fungal growth-promoting bac-
teria via the aminotransferases Glycine:2-oxoglutarate
aminotransferase and branched-chain amino acid amino-
transferase. Aminotransferases were studied before in the
context of Candida infection and were attributed to the
nutritional versatility of Candida species [42, 43]. More-
over, glutathione synthesized from L-glutamate is important
in counteracting oxidative stress [44]. Predicted reaction
fluxes including amino acids were notably different among
top promotors and inhibitors and may serve as potential
targets for identifying antifungal agents [45]. These findings
suggest that gut bacteria that potentially perturb C. albicans
growth may cause metabolic shifts in C. albicans towards
L-glutamate-promoting reactions, which may allow the
fungus to evade harmful oxidative stress levels.

Next, we focused on investigating fluxes of metabolite
exchange reactions. Exchange reactions allow to shuttle
metabolites in and out of a joint compartment in our paired in
silico models. These joint compartments serve as a connection
between the respective bacterial and the fungus model and
allow to predict potentially C. albicans growth rate influen-
cing metabolites (Fig. 2D, Supplementary Table S7). To
identify such metabolites we specifically filtered for exchange
reaction fluxes of metabolites that are primarily present for
either C. albicans growth inhibiting or promoting bacteria as
derived from our paired fungal–bacterial model simulations.
Again, many amino acids like L-proline, or L-aspartate, but
also other factors such as nitrite or putrescine are predicted to
be notably differentially consumed by fungus or bacteria.

Fig. 2 Pairwise in silico interaction experiments. A Distribution of
interaction type for C. albicans (C.a.) and bacterial species (B.s.).
Interactions have positive (+), negative (−) or no (o) effect on growth
rates of fungus or bacteria as indicated for interaction types. B Non-
metric multidimensional scaling (NMDS) plots of bacterial reaction
flux rates for top 50 C. albicans-inhibiting and -promoting bacteria
simulated for three different media (Western and high-fiber diet, Gifu
anaerobic media (GAM)). C Metabolic reactions of C. albicans with
the most substantially differing flux rates of C. albicans when paired
with top 50 inhibiting or promoting bacteria. Top: median C. albicans
flux rate differences across all bacterial species paired with C. albi-
cans. D Analysis for selected metabolites based on exchange reaction
fluxes of simulated fungal–bacterial pairs for top 50 promoting or
inhibiting bacterial species (cf. Supplementary Table S5). x-axis
indicates the percentage of exchange reaction fluxes with bacteria that
inhibit C. albicans growth.
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In vitro experiments and metagenomics analyses
support metabolic dependencies of C. albicans

To test the quality of our in silico analysis, we investigated
C. albicans growth in the presence of metabolites, per-
formed metagenomic sequencing for 24 individuals and
assessed C. albicans growth in bacterial spent media.

First, we grew C. albicans in the presence of metabolites
and investigated the growth-promoting or -inhibiting effect
of these metabolites under different carbon and/or nitrogen
availabilities (Fig. 3A). We selected six metabolites that
were either primarily consumed or produced by either
fungus or bacteria in our paired metabolic in silico simu-
lations (Fig. 2D, Supplementary Table S7). We hypothe-
sized that metabolites that e.g., are predicted to be

consumed by fungal growth inhibiting bacteria are either
withheld from the fungus or cannot be metabolized by the
fungus and are thus beneficial for the bacteria to outgrow C.
albicans. Likewise, metabolites that are predicted to be
produced by bacteria or consumed by the fungus when C.
albicans is paired with growth inhibiting bacteria might
provide clues of metabolites with a potential negative
effect on C. albicans growth. Nitrite showed severe growth
inhibiting effects on C. albicans, irrespective of available
carbon and nitrogen source concentrations. The same inhi-
biting influence was observed to a lesser extent for putres-
cine and for the formic acid salt, sodium formate. Both
putrescine and formic acid were also predicted to be pri-
marily consumed by C. albicans when paired with fungal
growth inhibiting bacteria. In contrast, L-Aspartate and
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Fig. 3 Experimental and clinical data supporting in silico predic-
tions. A Area under the curve (AUC) measurements for fungal growth
in presence of selected metabolites in a series of concentration dilution
experiments. AUCs were determined for three replicates. Mean change
compared to medium-only controls is shown with standard deviations
(SD) as error bars. B Bacterial abundance and growth rates were
obtained using MetaPhlAn2 and GRiD 1.2, respectively. Modeled
species were arranged according to the Open Tree of Life 10.4 [34].
Annotation rings from inner to outer: Significant correlations between
C. albicans abundance and bacterial abundance (magenta stars) or
bacterial GRiD score (green stars, Spearman’s coefficient, p < 0.05);
species with GRiD score greater than 1 in at least one sample (black
triangles); in silico interaction coefficients from GSMM analysis (blue

to red); sample bacterial abundance (N= 26, yellow to purple) sorted
by C. albicans abundance (highest abundance is outermost ring). C
Regression performance for all (left panel) or active (GRiD value > 1
in at least one patient, right panel) species. Each dot is a ratio of
inhibitors to promoters for a patient. Values for inhibitors and pro-
moters were calculated by summing products of bacterial abundance x
in silico coefficient for C. albicans. D Area under the curve (AUC) of
ordinal regression analysis for seven species with significant correla-
tions with C. albicans abundance or GRiD values as shown in B (left
panel). AUC of ordinal regression analysis for 29 selected species (see
main text). The regression model performance was achieved by using
GSMM based metabolic coefficients (Coefficients), bacterial relative
abundance (Abundances) or the product of both (Products).
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L-Proline showed concentration-dependent fungal growth-
promoting effects specifically under nitrogen limitation. For
both metabolites, we predicted a net consumption by C.
albicans growth inhibiting bacteria. It is noteworthy that,
while we did not test for morphological changes, proline
and putrescine are known inducers of hyphae formation in
C. albicans, which may therefore be influenced by bacterial
production and consumption of these metabolites [46–48].
Interestingly, desoxy-adenosine showed a growth-
promoting effect at low concentrations, most pronounced
under nitrogen limitation, whereas higher metabolite con-
centrations had negative effects on C. albicans growth. In
our in silico model we predicted its production by C.
albicans growth inhibting bacteria. A bacterial production
of desoxy-adenosine may therefore lead to sufficiently high
concentration levels of this metabolite that might restrict
growth of the fungus. In summary, our in silico analysis of
metabolite exchanges between fungus and bacteria and the
shown experimental data provide a concept for predicting
and testing potentially fungal growth modulating
metabolites.

Next, we investigated whether metabolic interactions are
the main driver of the observed abundance-based associa-
tions of gut bacteria and C. albicans by analyzing stool
samples from a cohort of 24 cancer patients (Supplementary
Table S8). We assessed the structure of the gut microbiome
in samples via shotgun metagenomic sequencing, generat-
ing 118.1 Gbp of sequencing data with an average of 2 ×
26.2 million paired-end reads per sample. Taxonomic pro-
filing revealed that Bacteroidetes (54.3%) and Firmicutes
(36.3%) were the most abundant phyla, followed by Pro-
teobacteria (5.83%), Verrucomicrobia (1.46%) and Acti-
nobacteria (1.34%). From the 400 bacterial species
identified in our samples, we retrieved GSMMs for 247
(Fig. 3B, Supplementary Fig. S2). The mean relative
abundance of C. albicans within the fungal community as
revealed by ITS1 amplicon sequencing of all cancer patient
samples was 39.7% over all patient samples, while indivi-
dual samples covered a broad relative abundance range
from 0.1% to 99.8% relative C. albicans abundance. Only
five bacterial species had a relative abundance with a sig-
nificant correlation by Spearman’s coefficient to C. albicans
relative abundance across all patients (Clostridium scindens
ρ= 0.45, Hungatella hathewayi ρ= 0.55, Flavonifacfractor
plautii ρ= 0.46, Barnesiella intestinihominis ρ=−0.47
and Alistipes putredinis ρ=−0.42, Fig. 3B). Although the
influence of external factors such as gender, age or therapy
type cannot be completely ruled out, this suggests that, at
least in terms of relative abundance compared to other
fungal species, a limited set of gut microbes might influence
C. albicans prevalence levels more than the remaining gut
microbiome constituting bacteria. Of note, the directionality
of the observed significant correlation was in accordance

with the predicted paired-growth relationship by the
GSMMs for all five bacteria (Supplementary Table S1). We
also calculated Growth Rate InDex (GRiD) [49] to estimate
in situ growth rates for bacteria species and analyze corre-
lation to C. albicans relative abundance. We observed a
finite GRiD value for 98 of the species in Fig. 3B (cf.
Supplementary Table S9). GRiD values for two bacteria
significantly correlated with C. albicans abundance (posi-
tive for Roseburia inulinivorans and negative for Para-
bacteroides distasonis, Fig. 3B) in the same direction as
predicted by our GSMMs.

We next investigated to what extent fungal growth is
influenced by spent media of selected bacterial strains for
which we established cultivation protocols in our lab
(Methods). Among the species selected for in vitro spent
media experiments, A. putredinis had the strongest inhibi-
tory effect in Western-diet conditions in in silico predictions
(Supplementary Table S1). This species was also found
significantly negatively correlated with C. albicans abun-
dance in the human gut (Fig. 3B). Of note, adjusting for the
external factors gender, age, ethnicity or immunotherapy
application in our metagenomic dataset, affected this sig-
nificant negative correlation only slightly (Supplementary
Table S8). The addition of spent media from A. putredinis
to C. albicans cultures (cf. Methods for details) resulted in
up to 23% growth inhibition of the fungus (Supplementary
Table S2). Interestingly, both butanoic and propanoic acid,
two short chain fatty acids (SCFAs) with fungistatic prop-
erties produced by the gut microbiome [50, 51] were found
with slight elevated concentrations in the spent media of A.
putredinis (202 µM and 116 µM compared to 148 µM and
88 µM in modified GAM for propanoic and butanoic acid,
respectively, Supplementary Table S2). A. putredinis is a
reported producer of propionate presumably next to succi-
nate [51]. Of note, for pairwise in silico simulations over all
possible combinations of A. putredinis and any bacteria that
are present in our human samples, we predicted that in 63%
of the paired models A. putredinis can secrete propanoic
acid. These data indicate that to a certain extend A. putre-
dinis might contribute to global propanoic but also butanoic
acid levels, two health promoting SCFAs [52]. In addition,
A. putredinis is dominant in the fecal microbiota of healthy
humans [53] and important for the maintenance of a healthy
intestinal barrier [54]. Generally, the genus Alistipes shows
disease protective effects against a number of diseases
including fibrosis, colitis, cancer or cardiovascular disease
[55]. Our results hint that A. putredinis is also potentially
able to prevent elevated C. albicans levels, and we suggest
more in-depth studies of A. putredinis in conjunction with
C. albicans. To further examine whether the observed
inhibition was a methodological artifact we performed
additional experiments with species showing either positive
or negative interaction with C. albicans. For example, our
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in silico predictions show that Ruminococcus torques con-
tributes positively to C. albicans growth, while also a non-
significant positive correlation between this species and C.
albicans levels was observed from the metagenomics data
(Fig. 3B, Supplementary Table S8). Indeed, in our spent
media experiment we also observed a positive effect of
Ruminococcus torques on C. albicans growth (15% for
100% spent media, 12% for 75% spent media, Supple-
mentary Table S2). Other strains showed varied levels of C.
albicans growth inhibition which is in agreement with our
metagenomic and spent media data except for Escherichia
coli. For E. coli we observe a disagreement between a
predicted positive growth effect on C. albicans, a low
positive correlation in the metagenomics data, and a nega-
tive effect in the spent media experiments. Interestingly, E.
coli was found to produce a soluble fungicidal factor, which
cannot be captured by our metabolic model and might
explain the discordance to our spent media results [56].

To further support the idea that metabolic interactions
with a few bacterial species might be sufficient to determine
C. albicans colonization levels, we investigated, by ordinal
regression analysis, if the ratio of abundance x growth
coefficients for all bacterial inhibitors vs. promoters corre-
lated with C. albicans levels (Methods, Ordinal regression
model). No significant correlation was seen when con-
sidering all species (Fig. 3C, left), indicating that the use of
all species as predictors does not allow for a good model to
predict C. albicans levels. Of note, the ratio of inhibitors to
promoters calculated using only species that were active in
at least one patient sample according to GRiD was not
significantly correlated to C. albicans abundance levels as
well (Fig. 3C, right). The critical role of metabolic inter-
actions between the limited set of 7 significantly correlating
bacterial species identified above to C. albicans relative
abundances was evident in the ordinal regression model we
developed using the interaction growth coefficients and
relative abundances of the bacteria. We investigated if
GSMM computed growth coefficients, relative bacterial
abundance, or both were good predictors for C. albicans
levels (Method, Ordinal regression models). We obtained
the highest performance of 0.78 Area Under the Receiver
Operating Characteristics (AUROC) using growth predic-
tion coefficients from our GSMM computation (Fig. 3D,
left). Using only relative bacteria abundance resulted in 0.56
AUROC, whereas a model using both interaction coeffi-
cients and growth data resulted in 0.58 AUROC. In addition
to using bacteria that show significant correlations to C.
albicans relative abundances as model features, we filtered
candidate bacteria by discarding first the bacteria prevalent
in at least 10%, but not more than 90% of the samples. This
reduces the number of feature candidates to 121 bacteria.
We selected next 10 subgroups of our samples by ignoring
~10% samples in each subset, such that each sample was

once not part of the subset. For each subset we started with
one bacterium and assessed model performance con-
secutively by adding further bacteria until all bacteria were
included as features. Bacteria that caused a drop in model
accuracy or regression slope were discarded, followed by
another iteration of the model performance evaluation.
These steps were repeated until no performance-impairing
bacteria were left in the feature list. The union of the gained
feature candidates across all 10 subsets resulted in a feature
list of 57 gut bacteria, which included, among others, A.
putridinis (Supplementary Table S10). We evaluated the
regression model with these bacteria and obtained 0.89
AUROC using only growth prediction coefficients from
our GSMM computation (Fig. 3D, right). Using only
relative bacteria abundance or both, interaction coefficients
and growth data, resulted again in a performance drop
down to 0.60 and 0.54 AUROC, respectively. These
results demonstrate that GSMM analysis based interaction
coefficients could be used as predictors of ordinally scaled
C. albicans levels. Our results indicate that the intrinsic
metabolic interactivity between a fungus and bacteria
contains valuable information about the performance of
classification models. This information should be more
extensively applied in future classification studies.

In conclusion we expanded the concept of using in silico
metabolic interaction calculations to accurately predict
pairwise beneficial or detrimental effects on co-existing
organisms [18, 25, 57] to bacterial-fungal interaction pre-
dictions based on studies suggesting that key gut species
might determine beneficial outcomes in patients with a
range of diseases [5, 6, 9]. Selected metabolite experiments
and shotgun metagenomics sequencing back our in silico
modeling concept based on pairwise metabolic interaction
simulations. Further studies of our predictions for major
metabolic pathways, for example for carbon compounds
and amino acids, may elucidate the specific mechanisms of
these influences. Selected metabolite measurements in
defined media could be used further for accurate predictions
of potential metabolite candidates that are preferentially
used by e.g., gut microbes over C. albicans and can hint
towards bacterial species that specifically secrete C. albi-
cans-inhibiting metabolites. Taken together, our findings
support that specific gut bacteria influence gut colonization
by C. albicans. Moreover, our analysis indicates that it may
be possible to design synthetic communities with only a
few bacterial species that could then influence essential
metabolic activities of C. albicans and prevent fungal
overgrowth. Further refinements of our model including
compartmentalization complemented by comprehensive
single-knockout studies of bacteria or the fungus may fur-
ther improve the predictive capacity. Also additional diets
and growth media compositions beyond the three used in
this study may be tested, since e.g., GAM compositions
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may vary, therefore influence in silico predictions and in
general, might not reflect in vivo conditions as well as high
fiber, western or other common human diets. Despite pair-
wise interactions were shown to be key drivers of the
dynamics of microbial communities [58], additional in
silico simulations of multiple interactions with e.g., the
recently published MAMBO algorithm [59] need to be
addressed, to potentially extend our understanding of the
intricate relationship between C. albicans and the gut
microbiota and its effect on C. albicans levels. Finally, tools
that incorporate spatial information [60, 61] could deter-
mine the impact of niche colonization by gut fungal and
bacterial species. In the present study we specifically
focused on the intricate relationship between (gut) bacteria
and C. albicans to elucidate their relationship independent
of host factors in order to keep free parameters in a feasible
range. Host factors are key modulators of fungal–bacterial
or fungal–bacterial–host interactions as could be shown in
other studies [3, 62–64]. Though adding considerable
complexity to the setup, an extension of our conceptual
approach to study specifically metabolic modes of
fungal–bacterial interaction with host factors might play an
important complementary role as long as the predictive
capacity can be supported by sufficient data around the
triangle host, bacteria and fungus. In summary, our strategy
of studying fungal–bacterial relationships in the gut using
an in silico, metabolism-driven approach already yielded
promising results. Our approach adds another useful layer
of in silico predictions that can contribute to stratify iden-
tification of potentially clinically relevant gut bacteria in
face of the steadily growing amount of high throughput
data. Ultimately, including metabolic in silico analysis
could promote additional systems-biology and systems-
medicine studies that focus on fungal infections and their
often lethal implications to humans.
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