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Abstract

Cachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of
cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut
microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The
cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome,
and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs),
methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in
the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-
cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri,
respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in
cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine
learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and
specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence
on cachexia with possible therapeutic applications.

Background

Cachexia is a multifactorial disorder frequently observed in
cancer patients, characterized by weight loss, muscle
wasting, adipose tissue changes, physical dysfunction, and
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depending on the cancer type [3], with the highest inci-
dences in gastrointestinal (80%) [4] and lung (60%) cancer
patients [5]. Although the underlying etiology of cachexia is
not fully understood, cytokine physiology has been sug-
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Several approaches have been proposed in the treatment
of cancer cachexia, including targeting catabolic factors,
appetite stimulation, and muscle regeneration; however,
these have had limited salutary effects [8]. Nutrients such as
omega-3 fatty acids (eicosapentaenoic acid and doc-
osahexaenoic acid) to mitigate inflammation, and leucine
and milk proteins to promote protein synthesis have also
been suggested as potential treatment options [9]. However,
no single therapeutic approach is sufficient to treat this
multifactorial disorder, and multimodal therapy considering
nutrition, exercise, and pharmacological agents are likely
needed [8, 10].

The gut microbiota is gaining attention as a new target
for cachexia treatment, due to its critical role in providing
depleted nutrients, modulating gut hormones, cachexia-
related cytokines, and improving gut barrier function [11].
Furthermore, the gut microbiota has been associated with
different disorders including those that share symptoms
with cachexia, such as anorexia [12], malnutrition [13], and
chronic fatigue syndrome (CFS) [14]. A recent study from
Potgens et al. has investigated gut microbiota in cachectic
mice with colon carcinoma and linked cachexia successfully
with Klebsiella oxytoca, a specific gut bacterial species
involved in altering gut barrier function [15]. From the
aspect of reversing cancer cachexia, a particular strain,
Faecalibacterium prausnitzii A2—-165 (DSM 17677), has
been used in cachectic mice with colon carcinoma. How-
ever, it did not modify the gut permeability, and no bio-
markers of gut barrier function were altered [7]. Notably,
most studies to date are limited to murine models with colon
cancer, neuroblastoma, or leukemia, and the analytical
approaches to disentangle microbiome composition were all
based on 16S rRNA gene sequencing, a less informative or
sensitive methodology in comparison to shotgun metage-
nomic sequencing [7, 15-18].

Here, we performed an in-depth analysis of the plasma
metabolome, the gut bacterial taxonomy, and function-
ality in 31 human lung cancer patients by applying
untargeted metabolomics to patient plasma samples and
shotgun metagenomics to collect stool samples. Specific
metabolites, intestinal microbial species, and their meta-
bolic pathways were associated with cachexia status. In
order to get a comprehensive picture of the role of the gut
microbiome in cachexia, we subsequently integrated the
taxonomic and functional signatures with metabolomics
data. A machine learning classifier of cachectic and non-
cachectic patients, with the combinatorial effect of
microbiota features taken into account, was also devel-
oped and further supported the putative role of gut
microbiota. Here we aim to identify the microbiome
associations with cachexia to open up the way for new
therapeutic options for this critical medical condition that
influences cancer treatment outcomes.
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Results

Cachexia affect the survival probability of lung
cancer patients

Thirty-one lung cancer patients, 12 women, and 19 men
were enrolled at the National Koranyi Institute of Pulmo-
nology (Budapest, Hungary) and at the County Hospital of
Torokbalint (Torokbalint, Hungary). The patients were
classified as A (well-nourished, scores 0-4, n=19), B
(moderately or suspected of being malnourished, scores
5-9, n=23), or C (severely malnourished, scores >9, n =4)
based on the abridged Patient-Generated Subjective Global
Assessment (aPG-SGA) [19]. We merged groups B and C
(aPG-SGA scores >4), referred to herein as the cachexia
group (n = 12), whereas patients classified as A served as
the non-cachexia group (aPG-SGA scores 0—4, n=19).
There were no significant differences in the distribution of
four lung cancer subtypes or cancer stage between the two
groups (p > 0.05 for both subtype and stage, Fisher’s exact
test, Supplementary Table S1). Moreover, the two groups
are matched in age, sex, and other parameters that could
potentially affect the gut microbiota composition (Supple-
mentary Table S2). As expected, the cachexia group has a
significantly lower body mass index (BMI) compared to
non-cachectic patients (p =5.7e—08, Wilcoxon rank-sum
test) (Fig. 1A). Univariate survival analysis demonstrated
that the cachexia patients have significantly lower survival
probability (vs. non-cachexia, p =0.0051, Log-rank test)
(Fig. 1B); furthermore, there were significantly increased
survival in patients with SGA scores A compared to B or C,
(p =0.0019, Log-rank test) (Fig. 1C).

The lower level of plasma BCAAs in cachexia

To characterize the plasma metabolites profile in cachexia in a
clinical setting, we collected plasma samples from our patients
that were subject to untargeted metabolomics analysis utilizing
ultra-high-performance  liquid chromatography-quadruple
time-of-flight mass spectrometry (UHPLC-QTOF-MS). In
total, more than 5000 metabolite features were captured, of
which 314 common metabolites were identified in a semi-
targeted manner. Multi-variate statistical analysis shows that
the metabolomic profiles of cachexia and non-cachexia patient
groups (based on Bray—Curtis dissimilarities) are statistically
significantly different (p = 0.026, »=0.110, ANOSIM), with
comparatively scattered cachectic samples observed, suggest-
ing higher variability in the cachectic patients (p <0.01,
betadisper) (Fig. 2A). The increase of dispersion has been
observed in different diseases, such as colorectal cancer,
Crohn’s disease, and liver cirrhosis [20]. The metabolite
classes, such as amino acids, vitamins, and indoles were sig-
nificantly depleted in cachectic lung cancer patients (Fig. 2B).
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Fig. 1 Comparison of clinicopathological characteristics and can-
cer cachexia. A Comparisons of body mass index (BMI), COPD
assessment test (CAT), and Pack-year (calculated by multiplying the
number of packs of cigarettes smoked per day by the number of years

In total, 41 individual metabolites were identified as
differentially abundant between the two groups (p <0.05,
Student’s t-test) (Fig. S1), with two of the identified meta-
bolites including isoleucine, remained significant after
multiple hypothesis testing corrections (false discovery rate
(FDR)-corrected p <0.2). Overall, essential amino acids,
such as isoleucine, leucine, and tryptophan were sig-
nificantly more abundant in non-cachectic patients (Figs. 2C
and S2). Low serum cholesterol level has been previously
suggested as a biomarker for malnutrition [21]. In our data,
there was no difference in serum cholesterol level between
the two groups (p =0.774, Student’s #-test). Consistent
with leucine and isoleucine, another member of branched-
chain amino acids (BCAAs), valine, was also found in
a lower amount in cachectic patients, but was not statis-
tically significant (p = 0.103, Student’s #-test). Of note, the
depletion of plasma BCAAs has also been shown in

Time in months
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the person has smoked) between cachexia and non-cachexia.
B, C Survival analysis highlights the impact of cachexia on the overall
survival of cancer patients, according to cachexia (B) and SGA
grouping (C) (p = 0.0051 and p = 0.0019, respectively, Log-rank test).

children with severe kwashiorkor (malnutrition caused by
a lack of protein in the diet). In contrast, an increase in
plasma BCAAs levels has been observed in type 2 diabetes
(T2D) and obese subjects compared to healthy people [22],
highlighting the high relevance of plasma BCAAs to
metabolic balance. Accordingly, the use of leucine in
the representation of BCAAs has been previously sug-
gested as dietary supplementation for tackling cachexia
[9]. In comparison, pipecolic acid, a non-proteogenic
cyclic amino acid produced during the degradation of
lysine, was the only amino acid significantly enriched in
our cachectic patients (p < 0.05, Student’s ¢-test). This may
result from the excessive degradation of lysine due to
increased protein degradation and decreased protein
synthesis. The level of pipecolic acid has been reported to
be elevated in patients with liver cirrhosis and hepatocel-
lular carcinoma [23].
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Fig. 2 Altered plasma metabolome profiles in cachexia. A Principal
coordinate analysis (PCoA) plot of cachexia and non-cachexia patient
groups based on plasma metabolomic profiles (Bray—Curtis distance)
(p =0.026, r=0.110, ANOSIM). B Differentially abundant metabo-
lite classes (¥*p <0.05, **p <0.01, Wilcoxon rank-sum test). Orange:

In summary, untargeted metabolomics revealed key cir-
culating plasma metabolites in cachectic lung cancer patients
that may have potential clinical relevance in cachexia syn-
drome development or progression. Alteration of blood
metabolites might be associated with gut microbiota and
their metabolic pathways, as demonstrated before [24].

Cancer cachexia patients have a distinct gut
bacterial profile

Next, we analyzed the change of gut microbiome according
to cancer cachexia using 31 fecal samples collected from

SPRINGER NATURE

higher abundance in cachexia; green: lower abundance in cachexia
group. C Plasma amino acids with significant differences between
cachexia and non-cachexia patient groups (p <0.05, Student’s r-test).

our lung cancer patients. Bacterial DNA was isolated from
the fecal samples and used for shotgun metagenomic
sequencing at an average depth of 6 Gbp. We compared the
gut microbiome composition between cachexia and non-
cachexia and observed no differentially abundant phyla
between the two groups (Fig. 3A). Regarding microbiota
community diversity, no significant difference was
observed in alpha-diversity between cachexia and non-
cachexia patients (p>0.05, Wilcoxon rank-sum test)
(Fig. 3B). However, significantly different microbiota
composition based on Bray-Curtis dissimilarities was
observed between the two groups (p =0.001, r=0.247,
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(p=0.001, r=0.212, ANOSIM). The BMI cutoff of 25 was used to

ANOSIM) (Fig. 3C), as well as the taxonomic evaluation of
dispersion (p <0.001, betadisper). No significant associa-
tions were found between overall microbiota compositions
and cancer stage in our cohort (p >0.05, PERMANOVA).
Subsequently, we compared the bacterial species composi-
tion of our lung cancer samples with a large healthy Eur-
opean cohort (n =471, Dutch) [25]. The cachexia group
was placed distinctly from other groups (non-cachexia
cancer patients or healthy individuals) in the ordination plot
(»p =0.001, r=0.212, ANOSIM) (Fig. 3C). The dissim-
ilarity between the cachexia group and healthy lean people
also reflected the complexity of the gut microbiota structure
of cachexia patients rather than merely resembling that of
lean people. We assessed the Firmicutes/Bacteroidetes (F/
B) ratio which has been hypothesized to be lower in
cachexia patients due to its reported association with obesity
and BMI [26, 27], but observed no significant difference
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between the cachexia and non-cachexia groups (p = 0.1196,
Wilcoxon rank-sum test), or between obese patients (BMI >
30) and non-obese patients (BMI <30) in our cohort (p =
0.4113, Wilcoxon rank-sum test). Moreover, no significant
positive correlation was found between the F/B ratio and
BMI in our lung cancer cohort (p = 0.5747, rho =0.1044,
Spearman’s rank correlation).

Next, we focused on comparisons at the species level and
identified fifty-one differentially abundant bacterial species
between the two groups (p < 0.05) (Fig. S3), most of which
(n=44) remained significant after multiple hypothesis
testing corrections (FDR-corrected p <0.05). A total of
13 significant species (Fig. 3D) were also prevalent (higher
than 20%) among all patients, the vast majority of which
were more abundant in the non-cachexia group. Prevotella
copri showed significantly lower abundance in cachectic
patients (FDR-corrected p = 0.006), in which the depletion

SPRINGER NATURE
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of plasma BCAAs was observed. Notably, P. copri has been
associated with enhanced gut microbiota biosynthesis and
circulating levels of BCAAs [28]. Klebsiella oxytoca, a
species previously associated with cancer cachexia in mice
[15], was found to be significantly higher in lung cancer
patients with cachexia (p =0.013, FDR =0.052), though
with low prevalence in this human-based cohort. Next, we
analyzed Faecalibacterium prausnitzii, a gut bacterium
with anti-inflammatory and gut barrier-enhancing properties
[29, 30], which as a treatment option did not improve the
gut permeability or the gut barrier function of cachectic
mice [7]. Importantly, in our human study, F. prausnitzii
was significantly more abundant in non-cachectic patients,
though detected only by Wilcoxon rank-sum test (p < 0.05).
Further strain-level analysis for F. prausnitzii showed that
another strain M21/2 had a higher difference between non-
cachexia and cachexia patients (p = 0.101, Wilcoxon rank-
sum test), as compared with the strain A2-165 investigated
before [7], suggesting the potential of alternative strains in
future treatment (Fig. S4).

Previous studies have revealed the considerable effects of
gut microbiota on blood metabolite profiles [24, 31]. In our
lung cancer cohort, we also observed a significant correla-
tion between the overall plasma metabolome and the gut
microbial species (p =2e—04, r =0.4565, Mantel test). To
further disentangle the interplay between gut microbiota
taxonomy and plasma metabolite pool, we correlated the
significantly differential abundant microbial species and
metabolites between cachexia and non-cachexia patients.
The plasma level of isoleucine, a member of BCAAs, was
significantly positively correlated with the abundance of P.
copri (Fig. 3E), as demonstrated before [28]. The 3-
oxocholic acid was more abundant in non-cachexia patients
and had a positive correlation with gut species Lactoba-
cillus gasseri, a potential probiotic [32]. Accordingly, L.
gasseri was also enriched in the non-cachexia group (vs
cachexia, p = 0.021, FDR = 0.082) (Fig. 3D). These results
further support the association between the gut microbiome
alterations and circulating plasma metabolites that may have
clinical implications in cachexia syndrome development or
progression.

Alteration of gut microbiota metabolic pathways
associated with cachexia

The use of shotgun metagenomic sequencing also enabled
us to further examine the variation of gut microbiota
functions according to cachexia in lung cancer patients.
Using the MetaCyc pathway abundances based on Uni-
Ref90 gene annotation results, we observed no significant
differences of functional alpha diversity between cachectic
and non-cachectic patients (p = 0.48 and p = 0.86, Shannon
and Simpson index, respectively, Wilcoxon rank-sum test).

SPRINGER NATURE

In contrast, we found a significant difference in microbial
community functional profiles (Bray-Curtis dissimilarities
calculated from MetaCyc pathway abundances) between the
two patient groups (p =0.035, »r=0.129, ANOSIM), but
not for the functional evaluation of dispersion (p = 0.068,
betadisper).

By directly comparing the overall abundances of path-
ways, we found that catabolic pathways of certain complex
carbohydrates (starch, mannan) and sugar derivatives (glu-
curonide, fructuronate, myo-, chiro- and scillo-inositol), as
well as anabolic pathways of several amino acids, were
significantly lower in the cachexia patient group compared
to the non-cachexia group (p <0.05, Wilcoxon rank-sum
test) (Fig. S5). Such decreased gut microbiota biosynthesis
of amino acids under cachexia, including isoleucine,
threonine, serine, and glycine, is in agreement with our
plasma metabolomics-based finding aforementioned, espe-
cially for BCAAs. Next, we performed KEGG pathway
enrichment analysis using GAGE [33], an approach that
identifies concordant changes of the genes present in a
particular pathway. As a result, purine and methane meta-
bolism pathways were enriched in the cachexia group
(Fig. 4A). In line with our findings, the alteration of purine
metabolism has been observed in the gut microbiota of
humans after body weight loss induced by Roux-en-Y
gastric bypass, as well as in the comparison between older
and younger people that have different muscle mass [34].
Methane may reduce appetite by direct stimulation of
intestinal hormone glucagon-like peptide-1 (GLP-1) [35].
Of note, the methanogen Methanobrevibacter smithii was
identified as the signature species of our cachectic group (p
<0.05, IndVal test) and has been associated with anorexia,
metabolic abnormalities [36], and chronic constipation [37].
In addition, heterolactic fermentation, which was found
enriched in cachectic patients (Fig. S5), might be highly
relevant to methanogenesis, as lactate is the most favorable
substrate for methanogens [38]. To further assess the
credibility of our pathway analysis, we next investigated
functions with known involvement in cachexia. A recent
study has identified LBP in the serum to be a new bio-
marker of cancer cachexia [7]. Lipopolysaccharide (LPS) is
a type of proinflammatory bacterial compound that can
cause reduced intestinal barrier function and increase its
translocation upon gut barrier alteration [39], as well as
inducing muscle catabolism mediated by toll-like receptor 4
(TLR4) [40]. Our analysis confirmed the significant
enrichment of the microbiota LPS biosynthesis pathway in
the cancer cachectic patients versus non-cachectic patients
(p<0.05) (Fig. 4A).

Given the differential abundances of specific carbohy-
drate degradation pathways, we then compared the
abundances of carbohydrate-active enzymes (CAZy) in the
two patient groups. At a high level in the CAZy hierarchy,
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Fig. 4 Functional change of gut microbiota according to cancer 0.05, +++FDR <0.01, Spearman’s rank correlation). Both differen-
cachexia. A Significantly enriched or depleted microbial KEGG tially abundant MetaCyc pathways and significant KEGG pathways

pathways from pathway enrichment analysis. Pathways in orange:
cachexia-enriched; green: cachexia-depleted. CPM: copies per million.
B Heatmap of Spearman’s rank correlation analysis between sig-
nificantly enriched pathways versus differentially abundant metabo-
lites (*p<0.05, **p<0.01, ***p <0.001, +FDR<0.1, ++FDR <

all CAZy classes were more abundant in the cachexia group
(Fig. S6), although not statistically significant (p >0.05,
Wilcoxon rank-sum test). Across all samples, 439 CAZy
families were detected. Twenty-nine CAZy families,
including 18 enriched and 11 depleted in cachectic patients,
were found significantly differentially abundant (p <0.05,
Wilcoxon rank-sum test), the majority of which belong to
the glycoside hydrolases class.

We have identified several microbial species to be cor-
related significantly with differential abundant plasma
metabolites (Fig. 3E). Interestingly, the functional pathways
of gut microbiota were found to have more and stronger
correlations with those metabolites than microbial species

from enrichment analysis were used here. C Receiver operating
characteristic (ROC) curve plots of Random Forest models based on
the gut microbial taxonomic and pathway features of cancer patients
for differentiating lung cancer patients with and without cachexia.

did (Fig. 4B). This implies that the influence of gut
microbiota on the plasma metabolites profile was more
likely through the combinatorial effects of multiple bacteria,
or microbial consortium, rather than individual microbial
species. Furthermore, it highlights the importance of
microbiota functions in interacting with plasma metabolome
and affecting host phenotypes, including cachexia. Addi-
tionally, the positive correlation between plasma level of
L-isoleucine and the gut microbial pathway “PWY-5101:
L-isoleucine biosynthesis II” (p =0.010, rho = 0.509,
Spearman’s rank correlation) suggests the impact of the
biosynthesis of amino acids in the gut to the plasma
amino acid levels. The plasma level of methylhistamine was
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correlated with a range of gut microbiota pathways and
significantly enriched in the non-cachectic patient group
(Fig. 4B). Similarly, the plasma levels of vitamins, such as
B vitamins pyridoxal and pyridoxamine (both lower in a
cachectic group), also showed multiple correlations with
microbiota functions and species (Fig. S7).

In summary, our results highlight the distinct gut
microbiota functional capacity in cachectic patients and the
close relationship between gut microbial functions and the
plasma metabolites in cachexia.

Gut microbiota features as a proxy of cachexia
status

Next, we built a fivefold cross-validation Random Forest
classification model using microbiota-derived features to
further test the associations between the human gut micro-
biome and cachexia in a clinical setting. We also sought to
verify the relevance and robustness of identified differen-
tially abundant taxa and pathways. In our European cohort
(non-cachexia [n = 19], cachexia [n = 12]), the AUC of the
model based on differentially abundant species (n=51)
was only 0.577, while using the differentially abundant
MetaCyc pathways as features (n =27) improved the per-
formance (AUC =0.849) (Fig. 4C). With combined fea-
tures of species (n=51) and MetaCyc pathways (n =27),
the AUC reached 0.875. This high-performance machine
learning model, which takes into account the complex
microbial interactions, further suggests the essential role of
gut microbiota in cachexia development. This model has
helped to identify a group of microbial species and func-
tions (Fig. S8) whose combinatorial effects may be asso-
ciated with cachexia in lung cancer patients. Presumably, a
simplified model where a single bacterium can have a
profound effect on cachexia status may not be sufficient,
considering the high complexity behind this disorder. This
complexity might be a possible reason why the supple-
mentation of Faecalibacterium prausnitzii for cachexia
treatment in mice was not successful [7]. The hybrid model
had a moderate performance (AUC = 0.7) when applied to
an independent validation cohort of seven lung cancer
patients (non-cachexia [n =35], cachexia [n = 2]) recruited
in a US clinic, which could also be attributed to microbiome
differences between the US and our European patients
independently of cachexia status.

Discussion

Cancer cachexia is associated with worse performance status
and frequently limits oncotherapy administration. To date,
we have no effective therapy to prevent cachexia. Using 16S
rRNA sequencing, a less advanced technique compared to
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shotgun metagenomics used in our work, recent studies have
shown the involvement of the microbial community in
cachexia by analyzing the gut microbiome in murine models
of colon cancer and leukemia [7, 18]. Here, we performed
shotgun metagenomic sequencing and plasma untargeted
metabolomics in a cohort of cancer patients, aiming to
identify gut bacteria species and metabolic functions that are
associated with cachexia. Through a comprehensive and
integrative analysis of these omics data, we disentangled
multiple links among gut microbial species, functions, and
plasma metabolites, which may collectively and ultimately
contribute to the development of this complex and multi-
modal disorder. Our findings not only provide clinical evi-
dence between gut microbiota and cachexia but also confirm
the previous results from preclinical animal models. The
contribution of the gut microbiome in cachexia was further
evaluated by a machine-learning model taking into account
the complex combinatorial effects of gut microbiota features.
This model achieved high accuracy in discriminating
patients with different cachexia status in the training cohort
and acceptable performance in a small independent valida-
tion cohort.

Despite our increased understanding of cachexia, pre-
vious work into gut microbiota was based on mice models
that cannot fully recapitulate human cancer cachexia [41].
The lack of appropriate mice models and the differences in
the complexity of the human and mice metabolic pathways
hindered the more in-depth investigation and the effect of
potential intervention. Very recently, Talbert et al. [41] have
developed a mouse model named KPP that can better model
the cachexia experienced by cancer patients. This model can
be used to further validate our findings in the future, or even
with another model that more closely resembles the
cachectic lung cancer patients. A possible limitation of our
study is that we included only lung cancer patients. The
relatively low sample size might also contribute to the non-
significant difference in Firmicutes/Bacteroidetes ratio. A
very recent study has demonstrated poor similarity in gut
microbial taxonomic abundances between humans and
mice after fecal transplantation [42]. This further highlights
the importance of investigating the relationship between
cancer cachexia and gut microbiota in clinical cohorts of
larger sample sizes. Despite that, our investigation into gut
microbiota and plasma metabolome in cachectic lung cancer
patients were able to achieve consistent findings with those
preclinical studies and the studies linking gut microbiota
with features of cachexia such as body weight loss, low
muscle mass, and low appetite [34]. Based on our cross-
sectional study, a longitudinal cohort study of more power
could be implemented in the future, which collects samples
from the same patients before and after cachexia develop-
ment, likely allowing for predicting modeling and stronger
conclusions to be drawn. A limitation of using PG-SGA
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instead of the international consensus of cachexia [43] is
that we characterize and compare patients by their nutri-
tional status. While aPG-SGA stage A (scores 0—4) includes
well-nourished patients without cachexia, stage B (scores
5-9) and C (scores>9) may include not only patients
with cancer cachexia but also moderate and severely
malnourished patients. Recently, another group reported a
secondary analysis of a multicenter, cross-sectional, obser-
vational study of 4231 patients with cancer [44]. They
found that PG-SGA was highly specific and could be used
as a tool to screen patients for cancer cachexia. In our study,
we set aPG-SGA score >4 cut-offs for cachexia, which is
expected to have a 90.3% sensitivity of detecting cachexia,
with scores below this cutoff having a negative predictive
value for excluding cachexia at 98.48% [44].

Our study offers a snapshot of gut microbiota and plasma
metabolome alteration in lung cancer patients with cachexia.
To our knowledge, this is the first endeavor to investigate the
role of gut microbiota in cachexia in the clinical setting.
Hopefully, it will contribute to relevant clinical research and
possible clinical targets in the future to attenuate, prevent or
treat cachexia. Future nutritional supplements may include
both amino acids and bile acids such as methylhistamine and
3-oxocholic acid. From the microbiota point of view, it
might be beneficial to use treatments that can reduce gut
inflammation and restore gut barrier function disrupted by
increased LPS production. Previous work has tested the
effect of a single bacterium identified from animal studies
[45-47]. As an extension, microbial cocktails or probiotics
containing mixtures of beneficial species newly identified in
this study, such as Lactobacillus gasseri and Prevotella
copri might be further tested in the future. Another clinical
aspect is the fecal microbiota transplantation to restore
healthy microbiota that might also be a possible future
approach to assess the clinical importance of gut microbiota
in cachexia. Lastly, combinations of different modes of
therapy may be more effective due to the metabolic com-
plexity of this disorder. Future prospective studies are nee-
ded to confirm these findings presented here.

Methods
Ethics statement

Our study was performed in accordance with the guidelines
of the Helsinki Declaration of the World Medical Asso-
ciation. The national-level ethics committee (Hungarian
Scientific and Research Ethics Committee of the Medical
Research Council (ETTTUKEB-50302-2/2017/EKU)) offi-
cially approved the study. All patients recruited were con-
sented to the study. The clinicopathological information
was collected, then patient identifiers were removed, and

afterward, patients cannot be identified either directly or
indirectly.

Study population

In total 31 lung cancer patients (12 female and 19 male)
were enrolled between 2017 and 2018 at the National
Koranyi Institute of Pulmonology, Budapest, Hungary, and
at the County Hospital of Pulmonology, Torokbalint,
Hungary (Supplementary Table S1). We included patients
with histologically confirmed adenocarcinoma (ADC)
(n =16), squamous cell carcinoma (SCC) (n = 10), non-
small cell lung carcinoma not otherwise specified
(NSCLC-NOS) (n=1), and small cell lung carcinoma
(SCLC) (n=4). The 58% (n = 18) of the patients included
were diagnosed with advanced-stage disease (Stage IIIB/
IV). Clinical TNM (Tumor, Node, Metastasis) stage
according to the Union for International Cancer Control
(8th edition) and age at the time of diagnosis were recor-
ded. We included consecutive (in terms of BMI) patients in
our study, thus representing an overall Gaussian distribu-
tion of BMI for lung cancer patients (p=0.3385,
Kolmogorov—Smirnov test). Patients were scored A (n =
19), B (n=238), and C (n = 4) based on aPG-SGA [19]. The
SGA scores were measured based on BMI, weight chan-
ges, food intake, symptoms of eating (appetite), and
functional capacity. At the time of study conduct, PG-SGA
allowed for more objective classification into three cate-
gories. Since that time, others have supported that PG-SGA
is a more comprehensive and more sensitive nutritional
assessment method (compared to cancer cachexia defined
according to international consensus) for detecting changes
in QOL domains and can contribute to the identification of
QoL deterioration risk [48]. Clinicopathological data
included gender, age, stage, and overall survival (OS). OS
was calculated from the time of diagnosis until death or last
available follow-up. The date of the last follow-up included
in this analysis was February 2019. All patients had no
known inflammatory bowel disease and no antibiotics
usage 60 days prior to stool sample collection.

Treatments

All treatments across all centers were conducted in accor-
dance with contemporary National Comprehensive Cancer
Network guidelines.

Schedule of sample collection procedures

Stool and blood baseline samples were obtained at the same
time point before the initiation of systemic therapy after

signed informed consent was obtained. All samples were
placed on the day of collection in the —80 °C freezer.
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US validation cohort information

Stool samples were collected from a human lung cancer
cohort of seven individuals (Supplementary Table S3) at
Western Regional Medical Center, Goodyear, Arizona,
USA, after signed informed consent under a protocol
approved by the Western Institutional Review Board
(WIRB protocol number 20140271, Pallyup, Washington,
USA). Bacterial DNA extraction, library preparation, and
shotgun metagenomic sequencing followed the same
approach as the EU Hungary cohort.

Plasma metabolomic analysis

Untargeted metabolomics profiling of patient plasma sam-
ples was performed by Afekta (Kuopio, Finland), as
detailed below.

Sample preparation

The plasma samples were prepared as follows: an aliquot of
the sample, 100 uL, was mixed with 400 uL of acetonitrile
and mixed by pipetting. The samples were placed on a 96-
well filter plate, which was centrifuged at 700 x g for 5 min
at 4 °C. Small aliquots were taken from each sample, mixed
together in a single tube, prepared in an identical way to the
other samples, and used as the quality control (QC) sample
in the analysis. The fecal samples were prepared as follows:
300 ul of cold 80% aqueous methanol was added per
100 mg of sample into homogenizer tubes. The sample
preparation procedures were performed on dry ice with
cooled instruments. The samples were homogenized with
Bead Ruptor 24 Elite (OMNI International) with Heart
program (6 m/s, 30 s). Next, the samples were vortexed for
10 s and centrifuged at 13,000 rpm and 4 °C for 10 min. The
supernatant was collected on a 96-well filter plate, which
was centrifuged at 700x g for 5min at 4 °C. The QC
sample was prepared in the same way as for the plasma
samples.

LC-MS analysis

The samples were analyzed by liquid chromatography-mass
spectrometry consisting of a 1290 Infinity Binary
UPLC coupled with a 6540 UHD Accurate-Mass Q-TOF
(Agilent Technologies), as described previously [49]. In
brief, a Zorbax Eclipse XDB-C18 column (2.1 x 100 mm,
1.8 um; Agilent Technologies) was used for the reversed-
phase (RP) separation and an Acquity UPLC BEH amide
column (Waters) for the HILIC separation. After each
chromatographic run, the ionization was carried out using
jet stream electrospray ionization (ESI) in the positive and
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negative mode, yielding four data files per sample. The
collision energies for the MS/MS analysis were selected as
10, 20, and 40 V, for compatibility with spectral databases.

Data analysis

The data analysis was performed separately on each of the
four modes and sample type combinations, resulting in a
total of eight preprocessing runs. The analysis was con-
ducted in R version 3.5.0 using in-house scripts. The
untargeted metabolomics method utilized here yielded
semi-quantitative data, generating the abundance of each
metabolite as peak areas. Signals with too many missing
values were removed by requiring a measured value in at
least 60% of the samples in at least one of the study groups.
The signals were corrected for the drift pattern caused by
the LC-MS procedures. Regularized cubic spline regression
was fit separately for each signal on the QC samples. The
smoothing parameter was chosen from an interval between
0.5 and 1.5 using leave-one-out cross-validation to prevent
overfitting. The performance of the drift correction was
assessed using non-parametric, robust estimates of the
relative standard deviation of QC samples (RSD*) and D-
ratio* as quality metrics. Drift correction was only applied if
the value of both quality metrics decreased, leading to
enhanced quality. Otherwise, the original signal was
retained. After the drift correction, low-quality signals were
removed. Signals were kept if their RSD* was below 20%
and their D-ratio below 40%. In addition, signals with
classic RSD, RSD*, and basic D-ratio all be-low 10% were
kept. This additional condition prevents the removal of
signals with very low values in all but a few samples. These
signals tend to have a very high value of D-ratio*, since the
median absolute deviation of the biological samples is not
affected by the large concentration in a handful of samples,
causing the D-ratio* to overestimate the significance of
random errors in measurements of QC samples. Thus, other
quality metrics were applied with a conservative limit of 0.1
to ensure that only good quality signals were kept this way.
Missing values were imputed using random forest imputa-
tion. Signals were then normalized using inverse-rank nor-
malization, to approximate a normal distribution. QC
samples were removed prior to imputation and normal-
ization, to prevent them from biasing the procedures.

Compound identification

The chromatographic and mass spectrometric characteristics
(retention time, exact mass, and MS/MS spectra) of the
significantly differential molecular features were compared
with entries in an in-house standard library and publicly
available databases, such as METLIN and HMDB, as well
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as with published literature. The annotation of each meta-
bolite and the level of identification were given based on the
recommendations published by the chemical analysis
working group metabolomics standards initiative [50].

Metagenomic sequencing and read QC

To examine the gut microbiome of our lung cancer cohort,
fecal samples were collected from 31 lung cancer patients at
diagnosis, before the initiation of oncotherapy (baseline).
Bacterial DNA was extracted using MO BIO PowerMax
Soil DNA Extraction Kits (MO BIO Laboratories, Inc.) and
purified with PowerClean Pro DNA Clean-Up Kits (MO
BIO Laboratories, Inc.) according to the manufacturer’s
protocol. Library preparation and shotgun metagenomic
sequencing for all samples were performed by the Beijing
genome institute using Illumina HiSeq 4000 with PE150 at
an average depth of 6 Gb. The sequenced reads were pro-
cessed with QC to remove the adapter regions, low-quality
reads, and human DNA contaminations (bwa (version
0.7.4-r385) mem against human reference genome ucsc.
hgl19) following the previously described steps [51].
Approximately 95% of the reads remained after the QC.
The 471 metagenomic data from the SO0FG project were
used as European healthy control in the taxa comparison
[25]. The taxonomic profiles of these SOOFG samples were
acquired by using the R package curatedMetagenomicData
(R 3.5.1, curatedMetagenomicData 1.13.3 package) [52].

Microbial taxonomic profiling and community
diversity analysis

The high-quality reads were taxonomically profiled using
MetaPhlAn2 [53] with default settings. The differentially
abundant taxa were identified using the Wald test imple-
mented in the R package DESeq2 [54] v1.22.2 on the
unrarefied relative abundance data, and the statistical sig-
nificance was filtered with p < (0.05 unless otherwise stated.
The alpha-diversity (Shannon index) of each sample and
beta-diversities (Bray—Curtis dissimilarities) among sam-
ples were calculated with VEGAN (v2.5.3) [55] based on
rarefied data. Rarefaction was applied to the abundance
table in estimated mapped reads to the depth of the less
abundant sample in order to equalize the depth among the
samples. To test the difference in the microbial composition
between two or more groups, ANOSIM (analysis of simi-
larities) was employed based on the Bray—Curtis dissim-
ilarity. For Faecalibacterium prausnitzii strain abundance
comparison, the high-quality reads were further tax-
onomically classified by using Kaiju [56], which is a
protein-level classification tool, with the microbial subset of
the NCBI BLAST non-redundant protein database nr
was used.

Assembly-free functional annotation

The high-quality reads after the QC were processed by
using HUMAnN2 [57]. In the pipeline, the reads were
mapped to the database of UniRef90 gene families, and then
the gene families were regrouped to MetaCyc reactions and
KEGG orthologs (KOs) for pathways annotation. The
quantified pathway abundances in the units of RPKs
(read per kilobase) were normalized to copies per million
(CPM) units by the provided script for further analyses.
KEGG pathway enrichment analysis was performed using
GAGE [33].

De novo assembly and CAZy annotation

The high-quality reads after the QC were further assembled
using IDBA-UD [58] with k-mer size ranging from 20 to
150 bp. The coding DNA sequence (CDS) regions were
predicted using MetaGeneMark [59] with the default para-
meters. The predicted peptide sequences were mapped to
the dbCAN database [60] using DIAMOND [61] with the
default parameters for CAZy annotation. The abundance of
genes was quantified with RPKM (reads per kilobase of
transcript per million mapped reads).

Classifier model

A random forest model was built and trained by performing
five-fold cross-validation using an R package, caret (R
3.3.0, caret 6.0.81 package) based on the predictors of the
differentially abundant bacterial species (p <0.05) and
MetaCyc pathways (p <0.05) that were identified by com-
paring cachexia and non-cachexia patient groups. The
model performance was evaluated using the area under the
ROC curve (AUC). For external validation of the classifier,
seven additional stool samples were obtained from US lung
cancer patients (cachexia n =2, non-cachexia n=135) and
were processed for metagenomics sequencing following the
same protocol as for the training cohort.

Statistical analysis

All statistical analyses were conducted in R software
(R 3.3.0). The student’s #-test was used for normally dis-
tributed clinical data and metabolites levels, whereas Fisher’
test was used to compare categorical variables. For other
continuous data that were not normally distributed, a non-
parametric Wilcoxon rank-sum test was employed. Statis-
tically different taxa were identified with the Wald test
using R package DESeq2 (v1.22.2) on the unrarefied
relative abundance data. Two-tailed p-values <0.05 were
considered significant unless otherwise stated. Multiple
hypothesis testing corrections were based on the FDR [62].
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Data availability

The shotgun metagenomic sequencing data have been
deposited in the NCBI Sequence Read Archive (SRA)
under accession number PRINA626477.
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